Using Genomic Data to Infer Historic Population Dynamics of Nonmodel Organisms

被引:126
作者
Beichman, Annabel C. [1 ]
Huerta-Sanchez, Emilia [2 ,3 ]
Lohmueller, Kirk E. [1 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA
[2] Univ Calif Merced, Dept Mol & Cell Biol, Merced, CA 95343 USA
[3] Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA
[4] Univ Calif Los Angeles, Interdept Program Bioinformat, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
来源
ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 49 | 2018年 / 49卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
coalescent; demographic inference; nonmodel organisms; statistical inference; whole-genome sequence data; APPROXIMATE BAYESIAN COMPUTATION; SINGLE-NUCLEOTIDE POLYMORPHISM; ALLELE FREQUENCY-SPECTRUM; DEMOGRAPHIC INFERENCE; GENETIC DIVERSITY; DNA-SEQUENCE; SEVERE BOTTLENECK; SELECTIVE SWEEPS; SAMPLING SCHEME; PIG GENOMES;
D O I
10.1146/annurev-ecolsys-110617-062431
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Genome sequence data are now being routinely obtained from many nonmodel organisms. These data contain a wealth of information about the demographic history of the populations from which they originate. Many sophisticated statistical inference procedures have been developed to infer the demographic history of populations from this type of genomic data. In this review, we discuss the different statistical methods available for inference of demography, providing an overview of the underlying theory and logic behind each approach. We also discuss the types of data required and the pros and cons of each method. We then discuss how these methods have been applied to a variety of nonmodel organisms. We conclude by presenting some recommendations for researchers looking to use genomic data to infer demographic history.
引用
收藏
页码:433 / 456
页数:24
相关论文
共 145 条
  • [11] Non-linear regression models for Approximate Bayesian Computation
    Blum, Michael G. B.
    Francois, Olivier
    [J]. STATISTICS AND COMPUTING, 2010, 20 (01) : 63 - 73
  • [12] Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach
    Boitard, Simon
    Rodriguez, Willy
    Jay, Flora
    Mona, Stefano
    Austerlitz, Frederic
    [J]. PLOS GENETICS, 2016, 12 (03):
  • [13] Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations
    Bosse, Mirte
    Megens, Hendrik-Jan
    Madsen, Ole
    Frantz, Laurent A. F.
    Paudel, Yogesh
    Crooijmans, Richard P. M. A.
    Groenen, Martien A. M.
    [J]. MOLECULAR ECOLOGY, 2014, 23 (16) : 4089 - 4102
  • [14] Detecting Identity by Descent and Estimating Genotype Error Rates in Sequence Data
    Browning, Brian L.
    Browning, Sharon R.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (05) : 840 - 851
  • [15] Improving the Accuracy and Efficiency of Identity-by-Descent Detection in Population Data
    Browning, Brian L.
    Browning, Sharon R.
    [J]. GENETICS, 2013, 194 (02): : 459 - +
  • [16] Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent
    Browning, Sharon R.
    Browning, Brian L.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 97 (03) : 404 - 418
  • [17] Inferring Bottlenecks from Genome-Wide Samples of Short Sequence Blocks
    Bunnefeld, Lynsey
    Frantz, Laurent A. F.
    Lohse, Konrad
    [J]. GENETICS, 2015, 201 (03) : 1157 - U651
  • [18] Estimation of hominoid ancestral population sizes under Bayesian coalescent models incorporating mutation rate variation and sequencing errors
    Burgess, Ralph
    Yang, Ziheng
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (09) : 1979 - 1994
  • [19] Gibbon genome and the fast karyotype evolution of small apes
    Carbone, Lucia
    Harris, R. Alan
    Gnerre, Sante
    Veeramah, Krishna R.
    Lorente-Galdos, Belen
    Huddleston, John
    Meyer, Thomas J.
    Herrero, Javier
    Roos, Christian
    Aken, Bronwen
    Anaclerio, Fabio
    Archidiacono, Nicoletta
    Baker, Carl
    Barre, Daniel
    Batzer, Marka.
    Beal, Kathryn
    Blancher, Antoine
    Bohrson, Craig L.
    Brameier, Markus
    Campbell, Michael S.
    Capozzi, Oronzo
    Casola, Claudio
    Chiatante, Giorgia
    Cree, Andrew
    Damert, Annette
    de Jong, Pieter J.
    Dumas, Laura
    Fernandez-Callejo, Marcos
    Flicek, Paul
    Fuchs, Nina V.
    Gue, Ivo
    Gut, Marta
    Hahn, Matthew W.
    Hernandez-Rodriguez, Jessica
    Hillier, LaDeana W.
    Hubley, Robert
    Ianc, Bianca
    Izsvak, Zsuzsanna
    Jablonski, Nina G.
    Johnstone, Laurel M.
    Karimpour-Fard, Anis
    Konkel, Miriam K.
    Kostka, Dennis
    Lazar, Nathan H.
    Lee, Sandra L.
    Lewis, Lora R.
    Liu, Yue
    Locke, Devin P.
    Mallick, Swapan
    Mendez, Fernando L.
    [J]. NATURE, 2014, 513 (7517) : 195 - +
  • [20] Conflation of Short Identity-by-Descent Segments Bias Their Inferred Length Distribution
    Chiang, Charleston W. K.
    Ralph, Peter
    Novembre, John
    [J]. G3-GENES GENOMES GENETICS, 2016, 6 (05): : 1287 - 1296