Total variation estimates in the Breuer-Major theorem

被引:2
作者
Nualart, David [1 ]
Zhou, Hongjuan [2 ]
机构
[1] Univ Kansas, Dept Math, 405 Snow Hall, Lawrence, KS 66045 USA
[2] Arizona State Univ, Sch Math & Stat Sci, 901 S Palm Walk, Tempe, AZ 85287 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2021年 / 57卷 / 02期
基金
美国国家科学基金会;
关键词
Breuer-Major theorem; Total variation; Stein's method; Malliavin calculus; Hermite rank; CENTRAL LIMIT-THEOREMS; QUADRATIC VARIATIONS; INDEX;
D O I
10.1214/20-AIHP1094
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper provides estimates for the convergence rate of the total variation distance in the framework of the Breuer-Major theorem, assuming some smoothness properties of the underlying function. The results are proved by applying new bounds for the total variation distance between a random variable expressed as a divergence and a standard Gaussian random variable, which are derived by a combination of techniques of Malliavin calculus and Stein's method. The representation of a functional of a Gaussian sequence as a divergence is established by introducing a shift operator on the expansion in Hermite polynomials. Some applications to the asymptotic behavior of power variations of the fractional Brownian motions and to the estimation of the Hurst parameter using power variations are presented.
引用
收藏
页码:740 / 777
页数:38
相关论文
共 20 条
  • [1] On a reverse form of the Brascamp-Lieb inequality
    Barthe, F
    [J]. INVENTIONES MATHEMATICAE, 1998, 134 (02) : 335 - 361
  • [2] Identification of filtered white noises
    Benassi, A
    Cohen, S
    Istas, J
    Jaffard, S
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (01) : 31 - 49
  • [3] The Brascamp-Lieb inequalities: Finiteness, structure and extremals
    Bennett, Jonathan
    Carbery, Anthony
    Christ, Michael
    Tao, Terence
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (05) : 1343 - 1415
  • [4] Biermé H, 2012, ALEA-LAT AM J PROBAB, V9, P473
  • [5] Central Limit Theorems and Quadratic Variations in terms of Spectral Density
    Bierme, Hermine
    Bonami, Aline
    Leon, Jose R.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 362 - 395
  • [6] BEST CONSTANTS IN YOUNGS INEQUALITY, ITS CONVERSE, AND ITS GENERALIZATION TO MORE THAN 3 FUNCTIONS
    BRASCAMP, HJ
    LIEB, EH
    [J]. ADVANCES IN MATHEMATICS, 1976, 20 (02) : 151 - 173
  • [7] CENTRAL LIMIT-THEOREMS FOR NON-LINEAR FUNCTIONALS OF GAUSSIAN FIELDS
    BREUER, P
    MAJOR, P
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (03) : 425 - 441
  • [8] COEURJOLLY J.-F., 2001, Statistical Inference for Stochastic Processes, V4, P199, DOI [10.1023/A:1017507306245, DOI 10.1023/A:1017507306245]
  • [9] Quadratic variations and estimation of the local Holder index of a Gaussian process
    Istas, J
    Lang, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (04): : 407 - 436
  • [10] The rate of convergence of Hurst index estimate for the stochastic differential equation
    Kubilius, K.
    Mishura, Y.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (11) : 3718 - 3739