Use of the Principles of Maximum Entropy and Maximum Relative Entropy for the Determination of Uncertain Parameter Distributions in Engineering Applications

被引:27
作者
Munoz-Cobo, Jose-Luis [1 ]
Mendizabal, Rafael [2 ]
Miquel, Arturo [1 ]
Berna, Cesar [1 ]
Escriva, Alberto [1 ]
机构
[1] Univ Politecn Valencia, Dept Ingn Quim & Nucl, E-46022 Valencia, Spain
[2] Consejo Seguridad Nucl, Madrid 28040, Spain
关键词
maximum entropy principle; maximum relative entropy principle; information entropy; updating probability distribution functions; INFORMATION-THEORY; STATISTICS;
D O I
10.3390/e19090486
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The determination of the probability distribution function (PDF) of uncertain input and model parameters in engineering application codes is an issue of importance for uncertainty quantification methods. One of the approaches that can be used for the PDF determination of input and model parameters is the application of methods based on the maximum entropy principle (MEP) and the maximum relative entropy (MREP). These methods determine the PDF that maximizes the information entropy when only partial information about the parameter distribution is known, such as some moments of the distribution and its support. In addition, this paper shows the application of the MREP to update the PDF when the parameter must fulfill some technical specifications (TS) imposed by the regulations. Three computer programs have been developed: GEDIPA, which provides the parameter PDF using empirical distribution function (EDF) methods; UNTHERCO, which performs the Monte Carlo sampling on the parameter distribution; and DCP, which updates the PDF considering the TS and the MREP. Finally, the paper displays several applications and examples for the determination of the PDF applying the MEP and the MREP, and the influence of several factors on the PDF.
引用
收藏
页数:37
相关论文
共 43 条
[1]  
Abramowitz M., 1970, Handbook of Mathematical Functions
[2]  
[Anonymous], 2010, Verification and Validation in Scientific Computing, DOI DOI 10.1017/CBO9780511760396
[3]  
[Anonymous], 2005, BEM PHAS REP PRES PR
[4]  
Boyack B., 1990, NUCL ENG DES, V119
[5]  
Caticha A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046127
[6]  
Coleman H. W., 2009, STANDARD VERIFICATIO
[7]   Uncertainty in finite element modeling and failure analysis: A metrology-based approach [J].
Fong, JT ;
Filliben, JJ ;
deWit, R ;
Fields, RJ ;
Bernstein, B ;
Marcal, PV .
JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2006, 128 (01) :140-147
[8]   From physics to economics: An econometric example using maximum relative entropy [J].
Giffin, Adom .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (08) :1610-1620
[9]  
Glaeser Horst, 2008, Science and Technology of Nuclear Installations, DOI 10.1155/2008/798901
[10]   Density Reconstructions with Errors in the Data [J].
Gomes-Goncalves, Erika ;
Gzyl, Henryk ;
Mayoral, Silvia .
ENTROPY, 2014, 16 (06) :3257-3272