Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction

被引:120
作者
Li, Ying [1 ]
Li, Fu-Min [1 ]
Meng, Xin-Ying [2 ]
Wu, Xin-Ru [2 ]
Li, Shu-Ni [1 ]
Chen, Yu [2 ]
机构
[1] Shaanxi Normal Univ, Sch Chem & Chem Engn, Key Lab Macromol Sci Shaanxi Prov, Xian 710062, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Sch Mat Sci & Engn, Shaanxi Key Lab Adv Energy Devices, Key Lab Appl Surface & Colloid Chem,Minist Educ, Xian 710062, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyanogel; Oxygen evolution reaction; Holey nanosheets; Defected atoms; EFFICIENT BIFUNCTIONAL ELECTROCATALYST; HYDROXIDE NANOSHEETS; WATER OXIDATION; NI FOAM; GRAPHENE; VACANCIES; CATALYST; HYBRID; EXFOLIATION; ELECTRODES;
D O I
10.1016/j.nanoen.2018.10.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxygen evolution reaction (OER) on the anode is a vital electrocatalytic reaction in the field of energy conversion. Currently, transition metals-based nanomaterials are promising Ir/Ru-alternative OER electrocatalysts in alkaline media. In this work, we report that in-situ direct growth of atomically thick Fe doped Co3O4 holey nanosheets on nickel foam (Fe-Co3O4 H-NSs/NF) using a simple cyanogel-NaBH4 route, which effectively avoids the tedious post-etch process of nanosheets using plasma, acid, alkali, and so on. Benefiting from ultrathin thickness (1.5 nm), numerous holes, and synergistic effect between Co and Fe atoms, Fe-Co3O4 H-NSs/NF provide a large specific surface area (199.12m(2) g(-1)) and highly active catalytic sites for the OER. Meanwhile, nickel foam substrate with three-dimensionally porous structure and high conductivity accelerates molecules/ions/gases transportation and electron transfer. Consequently, Fe-Co3O4 H-NSs/NF with optimal Co/Fe composition show super electrocatalytic performance for the OER, including an overpotential as small as similar to 204 mV at 10 mA cm(-2) current density and a small Tafel slope of 38 mV dec(-1), which is much better than commercial RuO2 nanoparticles.
引用
收藏
页码:238 / 250
页数:13
相关论文
共 89 条
[1]   Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting [J].
Ahn, Sung Hoon ;
Manthiram, Arumugam .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (06) :2496-2503
[2]   Scalable cellulose-sponsored functionalized carbon nanorods induced by cobalt for efficient overall water splitting [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
He, Daping ;
Monestel, Hellen Gabriela Rivera ;
Mu, Shichun .
CARBON, 2018, 137 :274-281
[3]   From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Liu, Xiaobo ;
Pu, Zonghua ;
Li, Wenqiang ;
Li, Qidong ;
Zhang, Jie ;
Tang, Haolin ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (05)
[4]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[5]   Cobalt Iron Hydroxide as a Precious Metal-Free Bifunctional Electrocatalyst for Efficient Overall Water Splitting [J].
Babar, Pravin ;
Lokhande, Abhishek ;
Shin, Hyeong Ho ;
Pawar, Bharati ;
Gang, Myeng Gil ;
Pawar, Sambhaji ;
Kim, Jin Hyeok .
SMALL, 2018, 14 (07)
[6]   Oxygen-Containing Amorphous Cobalt Sulfide Porous Nanocubes as High-Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium [J].
Cai, Pingwei ;
Huang, Junheng ;
Chen, Junxiang ;
Wen, Zhenhai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (17) :4858-4861
[7]   Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction [J].
Cao, Li-Ming ;
Wang, Jia-Wei ;
Zhong, Di-Chang ;
Lu, Tong-Bu .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (07) :3224-3230
[8]   Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution [J].
Chang, Jinfa ;
Xiao, Yao ;
Xiao, Meiling ;
Ge, Junjie ;
Liu, Changpeng ;
Xing, Wei .
ACS Catalysis, 2015, 5 (11) :6874-6878
[9]   Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction [J].
Chauhan, Meenakshi ;
Reddy, Kasala Prabhakar ;
Gopinath, Chinnakonda S. ;
Deka, Sasanka .
ACS CATALYSIS, 2017, 7 (09) :5871-5879
[10]   Facile synthesis of Cu doped cobalt hydroxide (Cu Co(OH)2) nano-sheets for efficient electrocatalytic oxygen evolution [J].
Chen, Lisong ;
Zhang, Huilin ;
Chen, Li ;
Wei, Xinfa ;
Shi, Jianlin ;
He, Mingyuan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (43) :22568-22575