DIFFUSION LIMIT AND THE OPTIMAL CONVERGENCE RATE OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM

被引:1
作者
Zhong, Mingying [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
基金
中国国家自然科学基金;
关键词
Vlasov-Poisson-Fokker-Planck system; spectral analysis; diffusion limit; convergence rate; GLOBAL WEAK SOLUTIONS; HIGH-FIELD LIMIT; ASYMPTOTIC-BEHAVIOR; CLASSICAL-SOLUTIONS; TIME BEHAVIOR; EXISTENCE;
D O I
10.3934/krm.2021041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study the diffusion limit of the classical solution to the Vlasov-Poisson-Fokker-Planck (VPFP) system with initial data near a global Maxwellian. We prove the convergence and establish the optimal convergence rate of the global strong solution to the VPFP system towards the solution to the drift-diffusion-Poisson system based on the spectral analysis with precise estimation on the initial layer.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 35 条
[1]  
[Anonymous], 1995, Differential Integ. Equations
[2]   On large time asymptotics for drift-diffusion-Poisson systems [J].
Arnold, A ;
Markowich, P ;
Toscani, G .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :571-581
[3]  
Bardos C., 1991, Mathematical Models & Methods in Applied Sciences, V1, P235, DOI 10.1142/S0218202591000137
[5]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[6]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[7]   Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system [J].
Bonilla, LL ;
Carrillo, JA ;
Soler, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) :1343-1372
[8]   EXISTENCE AND UNIQUENESS OF A GLOBAL SMOOTH SOLUTION FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM IN 3 DIMENSIONS [J].
BOUCHUT, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) :239-258
[9]   SMOOTHING EFFECT FOR THE NONLINEAR VLASOV-POISSON-FOKKER-PLANCK SYSTEM [J].
BOUCHUT, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :225-238
[10]   Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system [J].
Carrillo, JA ;
Soler, J ;
Vazquez, JL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) :99-132