Structure/function analysis of the interaction of adenomatous polyposis coli with DNA polymerase β and its implications for base excision repair

被引:28
作者
Balusu, Ramesh
Jaiswal, Aruna S.
Armas, Melissa L.
Kundu, Chanakya N.
Bloom, Linda. B.
Narayan, Satya
机构
[1] Univ Florida, UF Shands Canc Ctr, Gainesville, FL 32610 USA
[2] Univ Florida, UF Shands Canc Ctr, Dept Anat & Cell Biol, Gainesville, FL 32610 USA
[3] Univ Florida, UF Shands Canc Ctr, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA
关键词
D O I
10.1021/bi701632e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in the adenomatous polyposis coli (APC) gene are associated with an early onset of colorectal carcinogenesis. Previously, we described a novel role for the APC polypeptide in base excision repair (BER). The single-nucleotide (SN) and long-patch (LP) BER pathways act to repair the abasic sites in DNA that are induced by stressors, such as spontaneous oxidation/reduction, alkylation, and hyperthermia. We have shown that APC interacts with DNA polymerase beta(Pol-beta) and flap endonuclease 1 (Fen-1) and blocks Pol-beta-directed strand-displacement synthesis. In this study, we have mapped the APC interaction site in Pol-beta and have found that Thr79, Lys81, and Arg83 of Pol-beta were critical for its interaction with APC. The Pol-beta protein (T79A/K81A/R83A) blocked strand-displacement DNA synthesis in which tetrahydrofuran was used as DNA substrate. We further showed that the APC-mediated blockage of LP-BER was due to inhibition of Fen-1 activity. Analysis of the APC-mediated blockage of SN-BER indicated that the interaction of APC with Pol-beta blocked SN-BER activity by inhibiting Pol-beta-directed deoxyribose phosphate lyase activity. Collectively, our findings indicate that APC blocked both Pol-beta-directed SN- and LP-BER pathways and increased sensitivity of cells to alkylation induced DNA damage.
引用
收藏
页码:13961 / 13974
页数:14
相关论文
共 65 条
[1]   Enzymes and reactions at the eukaryotic DNA replication fork [J].
Bambara, RA ;
Murante, RS ;
Henricksen, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :4647-4650
[2]   Repair and genetic consequences of endogenous DNA base damage in mammalian cells [J].
Barnes, DE ;
Lindahl, T .
ANNUAL REVIEW OF GENETICS, 2004, 38 :445-476
[3]   Magnesium-induced assembly of a complete DNA polymerase catalytic complex [J].
Batra, VK ;
Beard, WA ;
Shock, DD ;
Krahn, JM ;
Pedersen, LC ;
Wilson, SH .
STRUCTURE, 2006, 14 (04) :757-766
[4]   Structure and mechanism of DNA polymerase β [J].
Beard, WA ;
Wilson, SH .
CHEMICAL REVIEWS, 2006, 106 (02) :361-382
[5]   Structural insights into DNA polymerase β fidelity:: hold tight if you want it right [J].
Beard, WA ;
Wilson, SH .
CHEMISTRY & BIOLOGY, 1998, 5 (01) :R7-R13
[6]   Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA [J].
Biade, S ;
Sobol, RW ;
Wilson, SH ;
Matsumoto, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (02) :898-902
[7]   LOCALIZATION OF THE GENE FOR FAMILIAL ADENOMATOUS POLYPOSIS ON CHROMOSOME-5 [J].
BODMER, WF ;
BAILEY, CJ ;
BODMER, J ;
BUSSEY, HJR ;
ELLIS, A ;
GORMAN, P ;
LUCIBELLO, FC ;
MURDAY, VA ;
RIDER, SH ;
SCAMBLER, P ;
SHEER, D ;
SOLOMON, E ;
SPURR, NK .
NATURE, 1987, 328 (6131) :614-616
[8]   Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1 [J].
Dantzer, F ;
de la Rubia, G ;
Murcia, JMD ;
Hostomsky, Z ;
de Murcia, G ;
Schreiber, V .
BIOCHEMISTRY, 2000, 39 (25) :7559-7569
[9]   Replication protein A stimulates long patch DNA base excision repair [J].
DeMott, MS ;
Zigman, S ;
Bambara, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (42) :27492-27498
[10]   Mapping of the 5′-2-deoxyribose-5-phosphate lyase active site in DNA polymerase β by mass spectrometry [J].
Deterding, LJ ;
Prasad, R ;
Mullen, GP ;
Wilson, SH ;
Tomer, KB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (14) :10463-10471