Pull-in range of the classical PLL with impulse signals

被引:3
作者
Alexandrov, Konstantin D. [1 ]
Kuznetsov, Nikolay V.
Leonov, Gennady A.
Neittaanmaki, Pekka
Seledzhi, Svetlana M.
机构
[1] St Petersburg State Univ, Univ Pr 28, St Petersburg 198504, Russia
基金
俄罗斯科学基金会;
关键词
phase-locked loop; nonlinear analysis; PLL; Best's conjecture; hidden oscillations; HIDDEN; ATTRACTORS; SYSTEM;
D O I
10.1016/j.ifacol.2015.05.090
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the present work the pull-in range of the classical PLL with impulse signals is studied. Numerical experiments in MatLab Simulink are presented and two analytical approaches are discussed. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved
引用
收藏
页码:562 / 567
页数:6
相关论文
共 32 条
[1]  
Alexandrov KD, 2014, INT C ULTRA MOD TELE, P78, DOI 10.1109/ICUMT.2014.7002082
[2]  
Andronov A. A., 1937, OSCILLATIONS
[3]  
Andronov A.A., 1966, Theory of oscillators
[4]  
[Anonymous], 1933, Ann. Della Sc. Norm. Super. Pisa
[5]  
Best R.E., 2007, PHASE LOCK LOOPS DES
[6]   Analytical-Numerical Methods of Finding Hidden Oscillations in Multidimensional Dynamical Systems [J].
Burkin, I. M. ;
Khien, Nguen Ngok .
DIFFERENTIAL EQUATIONS, 2014, 50 (13) :1695-1717
[7]   Complicated basins and the phenomenon of amplitude death in coupled hidden attractors [J].
Chaudhuri, Ushnish ;
Prasad, Awadhesh .
PHYSICS LETTERS A, 2014, 378 (09) :713-718
[8]  
de Bellesczize Henri., 1932, L'Onde lectrique, V11, P230
[9]  
Gardner F.M., 1966, Phase-Lock Techniques
[10]  
Gelig A. K., 1978, Stability of nonlinear systems with a nonunique equilibrium state