Algebraic points of bounded height on the projective line

被引:4
作者
Le Rudulier, Cecile [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2014年 / 26卷 / 03期
关键词
INEQUALITY; THEOREM;
D O I
10.5802/jtnb.888
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an absolute adelic height on the set of algebraic points of the projective line P-1, associate to an ample line bundle. We give an asymptotic formula for the number of algebraic points of fixed degree and of height lower than B, when B tends to infinity. The case of the standard height on P-1 has been studied by Masser and Vaaler. We generalize this result for any adelic height using a geometric point of view and one of he known cases of the Batyrev-Manin conjecture.
引用
收藏
页码:789 / 812
页数:24
相关论文
共 20 条
[1]  
[Anonymous], 1997, ASPECTS MATH
[2]  
Barroero F., 2013, ARXIC13050482
[3]   THE NUMBER OF RATIONAL-POINTS OF BOUNDED HEIGHT OF ALGEBRAIC-VARIETIES [J].
BATYREV, VV ;
MANIN, YI .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :27-43
[4]  
Bombieri E., 2006, HEIGHTS DIOPHANTINE, V4
[5]   INTEGRAL POINTS OF BOUNDED HEIGHT ON PARTIAL EQUI VARIANT COMPACTIFICATIONS OF VECTOR GROUPS [J].
Chambert-Loir, Antoine ;
Tschinkel, Yuri .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (15) :2799-2836
[6]  
Chern SJ, 2001, J REINE ANGEW MATH, V540, P1
[7]   Der relative Satz von Schanuel [J].
Christensen, Christian ;
Gubler, Walter .
MANUSCRIPTA MATHEMATICA, 2008, 126 (04) :505-525
[8]  
Dolgachev I., 2003, LECT INVARIENT THEOR
[9]  
Gao X., 1995, THESIS U COLORADO
[10]   Counting algebraic numbers with large height II [J].
Masser, David ;
Vaaler, Jeffrey D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :427-445