Poly(ε-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering

被引:52
|
作者
Zaiss, Sascha [1 ,2 ]
Brown, Toby D. [1 ]
Reichert, Johannes C. [1 ,3 ]
Berner, Arne [1 ,2 ]
机构
[1] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4001, Australia
[2] Univ Hosp Regensburg, Dept Trauma Surg, D-93055 Regensburg, Germany
[3] Evangel Waldkrankenhaus Spandau, Dept Orthoped & Trauma Surg, D-13589 Berlin, Germany
关键词
melt electrospinning; osteoblast; tissue engineering; bone; ovine; MECHANICAL-PROPERTIES; FIBER DIAMETER; SURFACE MODIFICATION; CALCIUM-PHOSPHATE; IN-VITRO; POLYCAPROLACTONE; CELLS; PROLIFERATION; STRATEGIES;
D O I
10.3390/ma9040232
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Melt electrospinning is a promising approach to manufacture biocompatible scaffolds for tissue engineering. In this study, melt electrospinning of poly(epsilon-caprolactone) onto structured, metallic collectors resulted in scaffolds with an average pore size of 250-300 mu m and an average fibre diameter of 15 mu m. Scaffolds were seeded with ovine osteoblasts in vitro. Cell proliferation and deposition of mineralised extracellular matrix was assessed using PicoGreen (R) (Thermo Fisher Scientific, Scoresby, Australia) andWAKO (R) HR II (WAKO, Osaka, Japan) calcium assays. Biocompatibility, cell infiltration and the growth pattern of osteoblasts on scaffolds was investigated using confocal microscopy and scanning electron microscopy. Osteoblasts proliferated on the scaffolds over an entire 40-day culture period, with excellent survival rates and deposited mineralized extracellular matrix. In general, the 3D environment of the structured melt electrospun scaffold was favourable for osteoblast cultures.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Poly(ε-caprolactone)/nano fluoridated hydroxyapatite scaffolds for bone tissue engineering: in vitro degradation and biocompatibility study
    Johari, N.
    Fathi, M. H.
    Golozar, M. A.
    Erfani, E.
    Samadikuchaksaraei, A.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (03) : 763 - 770
  • [42] Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering
    Huot, Stephane
    Rohman, Geraldine
    Riffault, Mathieu
    Pinzano, Astrid
    Grossin, Laurent
    Migonney, Veronique
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2013, 23 (04) : 281 - 288
  • [43] Advances in Electrospun Poly(ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering
    Robles, Karla N.
    Zahra, Fatima tuz
    Mu, Richard
    Giorgio, Todd
    POLYMERS, 2024, 16 (20)
  • [44] In vitro evaluation of poly ε-caprolactone/hydroxyapatite composite as scaffolds for bone tissue engineering with human bone marrow stromal cells
    Heo, S. J.
    Kim, S. E.
    Hyun, Y. T.
    Kim, D. H.
    Lee, H. M.
    Hwang, Y. M.
    Park, S. A.
    Shin, J. W.
    ASBM7: ADVANCED BIOMATERIALS VII, 2007, 342-343 : 369 - +
  • [45] Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration
    Sofi, Hasham S.
    Ashraf, Roqia
    Beigh, Mushtaq A.
    Sheikh, Faheem A.
    CUTTING-EDGE ENABLING TECHNOLOGIES FOR REGENERATIVE MEDICINE, 2018, 1078 : 49 - 78
  • [46] Novel Scaffolds Fabricated Using Oleuropein for Bone Tissue Engineering
    Fan, Hui
    Hui, Junfeng
    Duan, Zhiguang
    Fan, Daidi
    Mi, Yu
    Deng, Jianjun
    Li, Hui
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [47] Negative Voltage Electrospinning of Fibrous Nanocomposite Scaffolds for Bone Tissue Engineering
    Tong, H. W.
    Wang, M.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2012, 48 (01): : 38 - 43
  • [48] Electrospinning of tissue engineering scaffolds.
    Boland, ED
    Bowlin, GL
    Simpson, DG
    Wnek, GE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U344 - U344
  • [49] Electrospinning of cellulose scaffolds for tissue engineering
    Rodriguez, Katia
    Renneckar, Scott H.
    Gatenholm, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [50] Biodegradable poly(ε-caprolactone) nanowires for bone tissue engineering applications
    Porter, Joshua R.
    Henson, Andrew
    Popat, Ketul C.
    BIOMATERIALS, 2009, 30 (05) : 780 - 788