The three-dimensional weakly nonlinear Rayleigh-Taylor instability in spherical geometry

被引:4
|
作者
Zhang, J. [1 ]
Wang, L. F. [1 ,2 ,3 ]
Wu, J. F. [1 ]
Ye, W. H. [1 ,2 ,3 ]
Zou, S. Y. [1 ]
Ding, Y. K. [1 ,2 ,3 ]
Zhang, W. Y. [1 ,2 ,3 ]
He, X. T. [1 ,2 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
INERTIAL-CONFINEMENT FUSION; IGNITION; SIMULATIONS; STABILITY; GROWTH; FLOWS; STAGE;
D O I
10.1063/1.5128644
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fully three-dimensional Rayleigh-Taylor instability in spherical geometry is investigated in the weakly nonlinear regime. A theoretical model is developed for incompressible fluid and ideal Euler equations. Third-order solutions are derived for interface perturbations of spherical harmonic modes, Yn, m. Interface evolution, fundamental mode growth, the generated spectrum, and bubble growth are determined. It is found that the fastest growing modes satisfy the relation m similar or equal to(n+1)/2. The generated spectra demonstrate the feedback of mode coupling, which greatly depends on the azimuthal mode numbers. The growth factors are nearly the same for bubbles at different latitudes and bubbles with initially round cross-sectional perturbation shapes grow faster.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Simulation of the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry
    Yang, Yun-Peng
    Zhang, Jing
    Li, Zhi-Yuan
    Wang, Li-Feng
    Wu, Jun-Feng
    Ye, Wen-Hua
    He, Xian-Tu
    CHINESE PHYSICS LETTERS, 2020, 37 (05)
  • [2] Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry
    Zhang, J.
    Wang, L. F.
    Ye, W. H.
    Wu, J. F.
    Guo, H. Y.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2017, 24 (06)
  • [3] Nonlinear three-dimensional Rayleigh-Taylor instability
    Abarzhi, S.I.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-A):
  • [4] Nonlinear three-dimensional Rayleigh-Taylor instability
    Abarzhi, SI
    PHYSICAL REVIEW E, 1999, 59 (02): : 1729 - 1735
  • [5] Interface Width Effect on the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry
    Yang, Yun-Peng
    Zhang, Jing
    Li, Zhi-Yuan
    Wang, Li-Feng
    Wu, Jun-Feng
    Ye, Wun-Hua
    He, Xian-Tu
    CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [6] Weakly nonlinear multi-mode Rayleigh-Taylor instability in two-dimensional spherical geometry
    Zhang, J.
    Wang, L. F.
    Ye, W. H.
    Wu, J. F.
    Guo, H. Y.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2018, 25 (08)
  • [7] On the three-dimensional Rayleigh-Taylor instability
    He, XY
    Zhang, RY
    Chen, SY
    Doolen, GD
    PHYSICS OF FLUIDS, 1999, 11 (05) : 1143 - 1152
  • [8] RAYLEIGH-TAYLOR INSTABILITY IN SPHERICAL GEOMETRY
    GUPTA, NK
    LAWANDE, SV
    PHYSICAL REVIEW A, 1986, 33 (04) : 2813 - 2816
  • [9] Weakly Nonlinear Rayleigh-Taylor Instability in Cylindrically Convergent Geometry
    Guo, Hong-Yu
    Wang, Li-Feng
    Ye, Wen-Hua
    Wu, Jun-Feng
    Zhang, Wei-Yan
    CHINESE PHYSICS LETTERS, 2018, 35 (05)
  • [10] Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry
    杨云鹏
    张靖
    李志远
    王立锋
    吴俊峰
    叶文华
    贺贤土
    Chinese Physics Letters, 2020, 37 (05) : 85 - 88