Dictionary Learning-Based Image Reconstruction for Terahertz Computed Tomography

被引:9
作者
Zhong, Fasheng [1 ,2 ]
Niu, Liting [3 ]
Wu, Weiwen [1 ,2 ]
Liu, Fenglin [1 ,2 ]
机构
[1] Chongqing Univ, Key Lab Optoelect Technol & Syst, Minist Educ, Chongqing, Peoples R China
[2] Chongqing Univ, Engn Res Ctr Ind Computed Tomog Nondestruct Testi, Minist Educ, Chongqing 400044, Peoples R China
[3] Guangdong Univ Petrochem Technol, Coll Sci, Maoming, Guangdong, Peoples R China
关键词
Terahertz; CT; Image reconstruction; Dictionary learning; Incomplete data; CT RECONSTRUCTION; ALGORITHM; SPARSE; SYSTEM;
D O I
10.1007/s10762-021-00806-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Terahertz computed tomography (THz CT) demonstrates its advantages in aspects of nonmetallic and nonpolar materials penetration, 3D internal structure visualization, etc. To perform satisfied reconstruction results, it is necessary to obtain complete measurements from many different views. However, this process is time-consuming and we usually obtain incomplete projections for THz CT in practice, which generates artifacts in the final reconstructed images. To address this issue, dictionary learning-based THz CT reconstruction (DLTR) model is proposed in this study. Especially, the image patches are extracted from other state-of-the-art reconstructed images to train the initial dictionary by using the K-SVD algorithm. Then, the dictionary can be adaptively updated during THz CT reconstruction. Finally, the updated dictionary is used for further updating reconstructed images. In order to verify the accuracy and quality of DLTR method, the filtered back-projection (FBP), simultaneous algebraic reconstruction technique (SART), and total variation (TV) reconstruction are chosen as comparisons. The experiment results show that the DLTR method has a good capability for noise suppression and structures preservation.
引用
收藏
页码:829 / 842
页数:14
相关论文
共 50 条
[1]   Refraction losses in terahertz computed tomography [J].
Abraham, E. ;
Younus, A. ;
Aguerre, C. ;
Desbarats, P. ;
Mounaix, P. .
OPTICS COMMUNICATIONS, 2010, 283 (10) :2050-2055
[2]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[3]   Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging [J].
Ahi, Kiarash ;
Shahbazmohamadi, Sina ;
Asadizanjani, Navid .
OPTICS AND LASERS IN ENGINEERING, 2018, 104 :274-284
[4]   In Introductory Review to THz Non-Destructive Testing of Composite Mater [J].
Amenabar, I. ;
Lopez, F. ;
Mendikute, A. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2013, 34 (02) :152-169
[5]   Terahertz reflectometry imaging for low and high grade gliomas [J].
Bin Ji, Young ;
Oh, Seung Jae ;
Kang, Seok-Gu ;
Heo, Jung ;
Kim, Sang-Hoon ;
Choi, Yuna ;
Song, Seungri ;
Son, Hye Young ;
Kim, Se Hoon ;
Lee, Ji Hyun ;
Haam, Seung Joo ;
Huh, Yong Min ;
Chang, Jong Hee ;
Joo, Chulmin ;
Suh, Jin-Suck .
SCIENTIFIC REPORTS, 2016, 6
[6]   Optical Effects at projection measurements for Terahertz tomography [J].
Brahm, A. ;
Wilms, A. ;
Tymoshchuk, M. ;
Grossmann, C. ;
Notni, G. ;
Tuennermann, A. .
OPTICS AND LASER TECHNOLOGY, 2014, 62 :49-57
[7]   Volumetric spectral analysis of materials using terahertz-tomography techniques [J].
Brahm, A. ;
Kunz, M. ;
Riehemann, S. ;
Notni, G. ;
Tuennermann, A. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (01) :151-158
[8]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[9]   Artifact Suppressed Dictionary Learning for Low-Dose CT Image Processing [J].
Chen, Yang ;
Shi, Luyao ;
Feng, Qianjing ;
Yang, Jian ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Chen, Wufan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2271-2292
[10]   A NOVEL METHOD AND FAST ALGORITHM FOR MR IMAGE RECONSTRUCTION WITH SIGNIFICANTLY UNDER-SAMPLED DATA [J].
Chen, Yunmei ;
Ye, Xiaojing ;
Huang, Feng .
INVERSE PROBLEMS AND IMAGING, 2010, 4 (02) :223-240