Biomimetic Mineralization of Biomaterials Using Simulated Body Fluids for Bone Tissue Engineering and Regenerative Medicine

被引:0
作者
Shin, Kyungsup [1 ]
Acri, Timothy [2 ]
Geary, Sean [2 ]
Salem, Aliasger K. [2 ]
机构
[1] Univ Iowa, Coll Dent & Dent Clin, Dept Orthodont, Iowa City, IA USA
[2] Univ Iowa, Coll Pharm, Dept Pharmaceut Sci & Expt Therapeut, 115 S Grand Ave,S228 PHAR, Iowa City, IA 52242 USA
关键词
simulated body fluids; bone; bone tissue engineering; calcium phosphate; polymer scaffolds; CALCIUM-PHOSPHATE COATINGS; SCAFFOLDS IN-VITRO; MICRO-COMPUTED TOMOGRAPHY; NONVIRAL GENE DELIVERY; MESENCHYMAL STEM-CELLS; HYDROXYAPATITE COATINGS; POLY(LACTIDE-CO-GLYCOLIDE) SCAFFOLDS; MECHANICAL-PROPERTIES; COMPOSITE SCAFFOLDS; APATITE FORMATION;
D O I
10.1089/ten.tea.2016.0556
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Development of synthetic biomaterials imbued with inorganic and organic characteristics of natural bone that are capable of promoting effective bone tissue regeneration is an ongoing goal of regenerative medicine. Calcium phosphate (CaP) has been predominantly utilized to mimic the inorganic components of bone, such as calcium hydroxyapatite, due to its intrinsic bioactivity and osteoconductivity. CaP-based materials can be further engineered to promote osteoinductivity through the incorporation of osteogenic biomolecules. In this study, we briefly describe the microstructure and the process of natural bone mineralization and introduce various methods for coating CaP onto biomaterial surfaces. In particular, we summarize the advantages and current progress of biomimetic surface-mineralizing processes using simulated body fluids for coating bone-like carbonated apatite onto various material surfaces such as metals, ceramics, and polymers. The osteoinductive effects of integrating biomolecules such as proteins, growth factors, and genes into the mineral coatings are also discussed.
引用
收藏
页码:1169 / 1180
页数:12
相关论文
共 131 条
[1]   APATITE COATING ON CERAMICS, METALS AND POLYMERS UTILIZING A BIOLOGICAL PROCESS [J].
ABE, Y ;
KOKUBO, T ;
YAMAMURO, T .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 1990, 1 (04) :233-238
[2]   Osteoinduction, osteoconduction and osseointegration [J].
Albrektsson, T ;
Johansson, C .
EUROPEAN SPINE JOURNAL, 2001, 10 (Suppl 2) :S96-S101
[3]   Matrix vesicles and calcification. [J].
H. Clarke Anderson .
Current Rheumatology Reports, 2003, 5 (3) :222-226
[4]  
[Anonymous], 2016, HDB BIOCERAMICS BIOC
[5]   Biodegradable polymer matrix nanocomposites for tissue engineering: A review [J].
Armentano, I. ;
Dottori, M. ;
Fortunati, E. ;
Mattioli, S. ;
Kenny, J. M. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (11) :2126-2146
[6]   Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBF x 5 solution: influence of magnesium [J].
Barrere, F ;
van Blitterswijk, CA ;
de Groot, K ;
Layrolle, P .
BIOMATERIALS, 2002, 23 (10) :2211-2220
[7]   In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants [J].
Barrère, F ;
van der Valk, CM ;
Dalmeijer, RAJ ;
van Blitterswijk, CA ;
de Groot, K ;
Layrolle, P .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 64A (02) :378-387
[8]  
Bauer TW, 2000, CLIN ORTHOP RELAT R, P10
[9]   Can bioactivity be tested in vitro with SBF solution? [J].
Bohner, Marc ;
Lemaitre, Jacques .
BIOMATERIALS, 2009, 30 (12) :2175-2179
[10]   The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation [J].
Boonrungsiman, Suwimon ;
Gentleman, Eileen ;
Carzaniga, Raffaella ;
Evans, Nicholas D. ;
McComb, David W. ;
Porter, Alexandra E. ;
Stevens, Molly M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (35) :14170-14175