Existence in critical spaces for the magnetohydrodynamical system in 3D bounded Lipschitz domains

被引:0
作者
Monniaux, Sylvie [1 ]
机构
[1] Aix Marseille Univ, I2M UMR7373, CNRS, Marseille, France
关键词
Magnetohydrodynamical system; Well-posedness; Lipschitz domains; Critical spaces; NAVIER-STOKES EQUATIONS; SUBDOMAINS; OPERATOR;
D O I
10.1007/s41808-021-00115-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Existence of mild solutions for the 3D MHD system in bounded Lipschitz domains is established in critical spaces with the absolute boundary conditions.
引用
收藏
页码:311 / 322
页数:12
相关论文
共 17 条
[1]   Existence and regularity of solution for a model in magnetohydrodynamics [J].
Amrouche, Cherif ;
Boukassa, Saliha .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190 (190)
[2]  
Andreas A., 2004, HODGE DECOMPOSITIONS, P3
[3]  
[Anonymous], REV MAT IBEROAM
[4]   Quadratic estimates and functional calculi of perturbed Dirac operators [J].
Axelsson, A ;
Keith, S ;
McIntosh, A .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :455-497
[5]  
Brandolese L., 2020, WELL POSEDNESS BOUSS
[6]  
Brandolese L, 2020, TOHOKU MATH J, V72, P283
[7]   On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains [J].
Costabel, Martin ;
McIntosh, Alan .
MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) :297-320
[8]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[9]   RIESZ TRANSFORMS ASSOCIATED WITH THE HODGE LAPLACIAN IN LIPSCHITZ SUBDOMAINS OF RIEMANNIAN MANIFOLDS [J].
Hofmann, Steve ;
Mitrea, Marius ;
Monniaux, Sylvie .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (04) :1323-1349
[10]   The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains [J].
Mitrea, Dorina ;
Mitrea, Marius ;
Monniaux, Sylvie .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (06) :1295-1333