Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution

被引:74
作者
Amo, Carlos A. [1 ]
Perrino, Alma P. [1 ]
Payam, Amir F. [1 ,2 ]
Garcia, Ricardo [1 ]
机构
[1] CSIC, Mat Sci Factory Inst Ciencia Mat Madrid, C Sor Juana Ines Cruz 3, Madrid 28049, Spain
[2] Univ Durham, Dept Phys, Durham DH1 3LE, England
基金
欧洲研究理事会;
关键词
nanomechanics; bimodal AFM; multifrequency AFM; membrane proteins; metal-organic frameworks; ATOMIC-FORCE MICROSCOPY; SOFT MATTER; AFM; MULTIFREQUENCY; CELL; VISUALIZATION; MODULATION; PROTEINS; CONTRAST; SYSTEMS;
D O I
10.1021/acsnano.7b04381
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fast quantitative mapping of mechanical properties with nanoscale spatial resolution represents one of the major goals of force microscopy. This goal becomes more challenging when the characterization needs to be accomplished with subnanometer resolution in a native environment that involves liquid solutions. Here we demonstrate that bimodal atomic force microscopy enables the accurate measurement of the elastic modulus of surfaces in liquid with a spatial resolution of 3 angstrom. The Young's modulus can be determined with a relative error below 5% over a 5 orders of magnitude range (1 MPa to 100 GPa). This range includes a large variety of materials from proteins to metal-organic frameworks. Numerical simulations validate the accuracy of the method. About 30 s is needed for a Young's modulus map with subnanometer spatial resolution.
引用
收藏
页码:8650 / 8659
页数:10
相关论文
共 53 条
[1]   Observation of Nanoscale Refractive Index Contrast via Photoinduced Force Microscopy [J].
Ambrosio, Antonio ;
Devlin, Robert Charles ;
Capasso, Federico ;
Wilson, William L. .
ACS PHOTONICS, 2017, 4 (04) :846-851
[2]   Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies [J].
Amo, Carlos A. ;
Garcia, Ricardo .
ACS Nano, 2016, 10 (07) :7117-7124
[3]   High-speed atomic force microscopy coming of age [J].
Ando, Toshio .
NANOTECHNOLOGY, 2012, 23 (06)
[4]   Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements [J].
Baykara, Mehmet Z. ;
Todorovic, Milica ;
Moenig, Harry ;
Schwendemann, Todd C. ;
Uenverdi, Oezhan ;
Rodrigo, Lucia ;
Altman, Eric I. ;
Perez, Ruben ;
Schwarz, Udo D. .
PHYSICAL REVIEW B, 2013, 87 (15)
[5]   Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope [J].
Cartagena-Rivera, Alexander X. ;
Wang, Wen-Horng ;
Geahlen, Robert L. ;
Raman, Arvind .
SCIENTIFIC REPORTS, 2015, 5
[6]   Mapping of conservative and dissipative interactions in bimodal atomic force microscopy using open-loop and phase-locked-loop control of the higher eigenmode [J].
Chawla, Gaurav ;
Solares, Santiago D. .
APPLIED PHYSICS LETTERS, 2011, 99 (07)
[7]   Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy [J].
Chyasnavichyus, Marius ;
Young, Seth L. ;
Tsukruk, Vladimir V. .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (08)
[8]   Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review [J].
Cohen, Sidney R. ;
Kalfon-Cohen, Estelle .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2013, 4 :815-833
[9]   Quantitative Mapping of the Elastic Modulus of Soft Materials with HarmoniX and Peak Force QNM AFM Modes [J].
Dokukin, Maxim E. ;
Sokolov, Igor .
LANGMUIR, 2012, 28 (46) :16060-16071
[10]  
Dufrêne YF, 2017, NAT NANOTECHNOL, V12, P295, DOI [10.1038/nnano.2017.45, 10.1038/NNANO.2017.45]