A THOUGHT ON GENERALIZED MORREY SPACES

被引:46
作者
Sawano, Yoshihiro [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachouji City 1-1, Tokyo 1920364, Japan
关键词
Morrey spaces; generalized Morrey spaces; boundedness properties of operators; FRACTIONAL INTEGRAL-OPERATORS; INTRINSIC SQUARE FUNCTIONS; HIGHER-ORDER COMMUTATORS; MAXIMAL OPERATOR; SUBLINEAR-OPERATORS; RIESZ-POTENTIALS; SINGULAR-INTEGRALS; SOBOLEV EMBEDDINGS; WEIGHTED HARDY; BOUNDEDNESS;
D O I
10.22342/jims.1.1.819.41-112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Morrey spaces can complement the boundedness properties of operators that Lebesgue spaces can not handle. Morrey spaces which we have been handling are called classical Morrey spaces. However, classical Morrey spaces are not totally enough to describe the boundedness properties. To this end, we need to generalize parameters p and q, among others p.
引用
收藏
页码:210 / 281
页数:72
相关论文
共 128 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
Akbulut A, 2014, AZERBAIJAN J MATH, V4, P40
[3]  
Akbulut A, 2012, MATH BOHEM, V137, P27
[4]  
[Anonymous], 1994, THESIS
[5]  
[Anonymous], 2013, ADV HARMONIC ANAL OP
[6]   Commutators of Caldern-Zygmund and generalized fractional integral operators on generalized Morrey spaces [J].
Arai, Ryutaro ;
Nakai, Eiichi .
REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (02) :287-331
[7]   Sublinear operators with rough kernel generated by Calderon-Zygmund operators and their commutators on generalized local Morrey spaces [J].
Balakishiyev, Aydin S. ;
Guliyev, Vagif S. ;
Gurbuz, Ferit ;
Serbetci, Ayhan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, :1-18
[8]  
BOURGAIN J, 1991, LECT NOTES MATH, V1469, P179
[9]  
Budhi W. S., 2011, FAR E J MATH SCI, V57, P91
[10]   Commutators of Parabolic Singular Integrals on the Generalized Morrey Spaces [J].
Chen, Yan-ping ;
Ding, Yong .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (02) :367-378