Interband Absorption in Few-Layer Graphene Quantum Dots: Effect of Heavy Metals

被引:13
|
作者
Shtepliuk, Ivan [1 ,2 ]
Yakimova, Rositsa [1 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[2] NASU, Frantsevich Inst Problems Mat Sci, UA-142 Kiev, Ukraine
关键词
DFT; few-layer graphene quantum dots; heavy metals; interaction; absorption spectroscopy; DOS; CHARGE-TRANSFER; SELECTIVE DETECTION; ELECTRONIC-PROPERTIES; FLUORESCENCE PROBE; ELEMENTAL MERCURY; FACILE SYNTHESIS; GREEN SYNTHESIS; PHOTOLUMINESCENCE; CYSTEINE; ELECTROCHEMILUMINESCENCE;
D O I
10.3390/ma11071217
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Monolayer, bilayer, and trilayer graphene quantum dots (GQDs) with different binding abilities to elemental heavy metals (HMs: Cd, Hg, and Pb) were designed, and their electronic and optical properties were investigated theoretically to understand deeply the optical response under heavy metal exposure. To gain insight into the nature of interband absorption, we performed density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations for thickness-varying GQDs. We found that the interband absorption in GQDs can be efficiently tuned by controlling the thickness of GQDs to attain the desirable coloration of the interacting complex. We also show that the strength of the interaction between GQDs and Cd, Hg, and Pb is strongly dependent on the number of sp(2)-bonded layers. The results suggest that the thickness of GQDs plays an important role in governing the hybridization between locally-excited (LE) and charge-transfer (CT) states of the GQDs. Based on the partial density-of-states (DOS) analysis and in-depth knowledge of excited states, the mechanisms underlying the interband absorption are discussed. This study suggests that GQDs would show an improved sensing performance in the selective colorimetric detection of lead by the thickness control.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Structural Distortions in Few-Layer Graphene Creases
    Robertson, Alex W.
    Bachmatiuk, Alicja
    Wu, Yimin A.
    Schaeffel, Franziska
    Buechner, Bernd
    Ruemmeli, Mark H.
    Warner, Jamie H.
    ACS NANO, 2011, 5 (12) : 9984 - 9991
  • [42] Resolving few-layer antimonene/graphene heterostructures
    Tushar Gupta
    Kenan Elibol
    Stefan Hummel
    Michael Stöger-Pollach
    Clemens Mangler
    Gerlinde Habler
    Jannik C. Meyer
    Dominik Eder
    Bernhard C. Bayer
    npj 2D Materials and Applications, 5
  • [43] Discovery of natural few-layer graphene on the Moon
    Wei Zhang
    Qing Liang
    Xiujuan Li
    LaiPeng Ma
    Xinyang Li
    Zhenzhen Zhao
    Rui Zhang
    Hongtao Cao
    Zizhun Wang
    Wenwen Li
    Yanni Wang
    Meiqi Liu
    Nailin Yue
    Hongyan Liu
    Zhenyu Hu
    Li Liu
    Qiang Zhou
    Fangfei Li
    Weitao Zheng
    Wencai Ren
    Meng Zou
    National Science Review, 2024, 11 (12) : 76 - 79
  • [44] Competing topological phases in few-layer graphene
    Carmier, Pierre
    Shevtsov, Oleksii
    Groth, Christoph
    Waintal, Xavier
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2013, 12 (02) : 175 - 187
  • [45] Nanomechanical properties of few-layer graphene membranes
    Poot, M.
    van der Zant, H. S. J.
    APPLIED PHYSICS LETTERS, 2008, 92 (06)
  • [46] Lubrication of rough copper with few-layer graphene
    Bian, Jianjun
    Nicola, Lucia
    TRIBOLOGY INTERNATIONAL, 2022, 173
  • [47] Effect of Ti doping on spin injection and relaxation in few-layer graphene
    Zhao, Bing
    Xu, Xiaoguang
    Wang, Le
    Li, Juan
    Zhang, Ziyu
    Liu, Pengfei
    Liu, Qi
    Wang, Zhicheng
    Jiang, Yong
    CARBON, 2018, 127 : 568 - 575
  • [48] Electric field doping of few-layer graphene
    Escoffier, W.
    Poumirol, J.
    Yang, R.
    Goiran, M.
    Raquet, B.
    Broto, J.
    PHYSICA B-CONDENSED MATTER, 2010, 405 (04) : 1163 - 1167
  • [49] Charge carriers in few-layer graphene films
    Latil, Sylvain
    Henrard, Luc
    PHYSICAL REVIEW LETTERS, 2006, 97 (03)
  • [50] Preparation and capacitance performance of few-layer graphene
    Wu Y.
    Bao W.
    Xie Y.
    Yao C.
    Mater. Res. Innov., 2022, 6 (382-388): : 382 - 388