High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite

被引:349
作者
Han, Fudong [1 ]
Yue, Jie [1 ]
Fan, Xiulin [1 ]
Gao, Tao [1 ]
Luo, Chao [1 ]
Ma, Zhaohui [1 ]
Suo, Liumin [1 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
All-solid-state; lithium-sulfur batteries; nanocomposite; mixed-conductive; electrode; reinforcement; HIGH-CAPACITY; CATHODE MATERIALS; ELECTROLYTE; ENERGY; COMPOSITES; STABILITY;
D O I
10.1021/acs.nanolett.6b01754
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium-sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocomposite electrode consisting of a homogeneous distribution of nanosized active material, solid electrolyte, and carbon. Here, we reported a novel bottom-up method to synthesize such a nanocomposite by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and Li6PS5Cl as the solid electrolyte in ethanol, followed by a coprecipitation and high-temperature carbonization process. Li2S active material and Li6PS5Cl solid electrolyte with a particle size of similar to 4 nm were uniformly confined in a nanoscale carbon matrix. The homogeneous nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities enabled a mechanical robust and mixed conductive (ionic and electronic conductive) sulfur electrode for ASSLSB. A large reversible capacity of 830 mAh/g (71% utilization of Li2S) at SO mA/g for 60 cycles with a high rate performance was achieved at room temperature even at a high loading of Li2S (similar to 3.6 mg/cm(2)). This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance all-solid-state lithium sulfur batteries.
引用
收藏
页码:4521 / 4527
页数:7
相关论文
共 38 条
[1]   A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte [J].
Agostini, Marco ;
Aihara, Yuichi ;
Yamada, Takanobu ;
Scrosati, Bruno ;
Hassoun, Jusef .
SOLID STATE IONICS, 2013, 244 :48-51
[2]   LITHIUM DIFFUSION IN THE SUPERIONIC CONDUCTOR LI2S [J].
ALTORFER, F ;
BUHRER, W ;
ANDERSON, I ;
SCHARPF, O ;
BILL, H ;
CARRON, PL ;
SMITH, HG .
PHYSICA B, 1992, 180 :795-797
[3]   Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance [J].
Bae, Chang-Jun ;
Erdonmez, Can K. ;
Halloran, John W. ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1254-1258
[4]   Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application [J].
Boulineau, Sylvain ;
Courty, Matthieu ;
Tarascon, Jean-Marie ;
Viallet, Virginie .
SOLID STATE IONICS, 2012, 221 :1-5
[5]   Using all energy in a battery [J].
Dudney, Nancy J. ;
Li, Juchuan .
SCIENCE, 2015, 347 (6218) :131-132
[6]   Highly Utilized Lithium Sulfide Active Material by Enhancing Conductivity in All-solid-state Batteries [J].
Hakari, Takashi ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
CHEMISTRY LETTERS, 2015, 44 (12) :1664-1666
[7]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[8]   Moving to a Solid-State Configuration: A Valid Approach to Making Lithium-Sulfur Batteries Viable for Practical Applications [J].
Hassoun, Jusef ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2010, 22 (45) :5198-+
[9]   All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes [J].
Hayashi, A ;
Ohtomo, T ;
Mizuno, F ;
Tadanaga, K ;
Tatsumisago, M .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (08) :701-705
[10]   All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material [J].
Hayashi, Akitoshi ;
Ohtsubo, Ryoji ;
Ohtomo, Takamasa ;
Mizuno, Fuminori ;
Tatsumisago, Masahiro .
JOURNAL OF POWER SOURCES, 2008, 183 (01) :422-426