Boundary value problems for a class of first order quasilinear ordinary differential equations

被引:1
作者
Bouchez, Vincent [1 ]
Mawhin, Jean [1 ]
机构
[1] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain La Neuve, Belgium
关键词
Periodic Problem; Antiperiodic Problem; Leray-Schauder degree; first order phi-laplacian; MEAN-CURVATURE EQUATION; EXACT MULTIPLICITY; POSITIVE SOLUTIONS; PERIODIC-SOLUTIONS; EXACT NUMBER; TIME MAPS;
D O I
10.4171/PM/1951
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using continuation theorems of Leray-Schauder degree theory, we obtain existence results for the first order quasilinear boundary value problem (phi(u))' = f(t, u), u(T) = bu(0), where phi : R -> (-a, a) is an homeomorphism such that phi(0) = 0 and f : [0, T] x R -> R is a continuous function, a and T being positive real numbers and b some non zero real number.
引用
收藏
页码:217 / 247
页数:31
相关论文
共 21 条