Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads

被引:77
作者
Pellicano, F
Amabili, M
机构
[1] Univ Modena, Dip Ingn Meccan & Civile, I-41100 Modena, Italy
[2] Univ Parma, Dip Ingn Ind, I-43100 Parma, Italy
关键词
stability; vibration; axial loads; LARGE-AMPLITUDE VIBRATIONS; FLOWING FLUID; NONLINEAR DYNAMICS; PARAMETRIC-INSTABILITY;
D O I
10.1016/S0020-7683(03)00120-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the present study, the dynamic stability of simply supported, circular cylindrical shells subjected to dynamic axial loads is analysed. Geometric nonlinearities due to finite-amplitude shell motion are considered by using the Donnell's nonlinear shallow-shell theory. The effect of structural damping is taken into account. A discretization method based on a series expansion involving a relatively large number of linear modes, including axisymmetric and asymmetric modes, and on the Galerkin procedure is developed. Axisymmetric modes are included; indeed, they are essential in simulating the inward deflection of the mean oscillation with respect to the equilibrium position and in describing the axisymmetric deflection due to axial loads. A finite length, simply supported shell is considered; the boundary conditions are satisfied, including the contribution of external axial loads acting at the shell edges. The effect of a contained liquid is investigated. The linear dynamic stability and nonlinear response are analysed by using continuation techniques and direct simulations. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:3229 / 3251
页数:23
相关论文
共 36 条
[1]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid.: Part IV:: Large-amplitude vibrations with flow [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 2000, 237 (04) :641-666
[2]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid.: Part III:: Truncation effect without flow and experiments [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 2000, 237 (04) :617-640
[3]   Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction [J].
Amabili, Marco ;
Païdoussis, Michael P. .
Applied Mechanics Reviews, 2003, 56 (04) :349-356
[4]   Multimode approach to nonlinear supersonic flutter of imperfect circular cylindrical shells [J].
Amabili, M ;
Pellicano, F .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2002, 69 (02) :117-129
[5]   Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF FLUIDS AND STRUCTURES, 1998, 12 (07) :883-918
[6]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid.: Part I:: Stability [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 1999, 225 (04) :655-699
[7]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part II:: Large-amplitude vibrations without flow [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 1999, 228 (05) :1103-1124
[8]   Nonlinear vibrations and multiple resonances of fluid-filled, circular shells, part 1: Equations of motion and numerical results [J].
Amabili, M ;
Pellicano, F ;
Vakakis, AF .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2000, 122 (04) :346-354
[9]  
AMABILI M, 2002, P S FSI ASME INT MEC, V3
[10]  
[Anonymous], P S NONL DYN SHELLS