RadSigBench: a framework for benchmarking functional genomics signatures of cancer cell radiosensitivity

被引:3
作者
O'Connor, John D.
Overton, Ian M.
McMahon, Stephen J.
机构
关键词
prediction modelling; cancer; transcriptomics; radiation therapy; radiosensitivity; GENE-EXPRESSION; INDEX PREDICTS; RADIATION; RADIOTHERAPY; CARCINOMA; SURVIVAL; BIOLOGY;
D O I
10.1093/bib/bbab561
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multiple transcriptomic predictors of tumour cell radiosensitivity (RS) have been proposed, but they have not been benchmarked against one another or to control models. To address this, we present RadSigBench, a comprehensive benchmarking framework for RS signatures. The approach compares candidate models to those developed from randomly resampled control signatures and from cellular processes integral to the radiation response. Robust evaluation of signature accuracy, both overall and for individual tissues, is performed. The NCI60 and Cancer Cell Line Encyclopaedia datasets are integrated into our workflow. Prediction of two measures of RS is assessed: survival fraction after 2 Gy and mean inactivation dose. We apply the RadSigBench framework to seven prominent published signatures of radiation sensitivity and test for equivalence to control signatures. The mean out-of-sample R-2 for the published models on test data was very poor at 0.01 (range: -0.05 to 0.09) for Cancer Cell Line Encyclopedia and 0.00 (range: -0.19 to 0.19) in the NCI60 data. The accuracy of both published and cellular process signatures investigated was equivalent to the resampled controls, suggesting that these signatures contain limited radiation-specific information. Enhanced modelling strategies are needed for effective prediction of intrinsic RS to inform clinical treatment regimes. We make recommendations for methodological improvements, for example the inclusion of perturbation data, multiomics, advanced machine learning and mechanistic modelling. Our validation framework provides for robust performance assessment of ongoing developments in intrinsic RS prediction.
引用
收藏
页数:12
相关论文
共 67 条
  • [1] Integrative Radiogenomic Profiling of Squamous Cell Lung Cancer
    Abazeed, Mohamed E.
    Adams, Drew J.
    Hurov, Kristen E.
    Tamayo, Pablo
    Creighton, Chad J.
    Sonkin, Dmitriy
    Giacomelli, Andrew O.
    Du, Charles
    Fries, Daniel F.
    Wong, Kwok-Kin
    Mesirov, Jill P.
    Loeffler, Jay S.
    Schreiber, Stuart L.
    Hammerman, Peter S.
    Meyerson, Matthew
    [J]. CANCER RESEARCH, 2013, 73 (20) : 6289 - 6298
  • [2] The radiosensitivity index predicts for overall survival in glioblastoma
    Ahmed, Kamran A.
    Chinnaiyan, Prakash
    Fulp, William J.
    Eschrich, Steven
    Torres-Roca, Javier F.
    Caudell, Jimmy J.
    [J]. ONCOTARGET, 2015, 6 (33) : 34414 - 34422
  • [3] Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen
    Amundson, Sally A.
    Do, Khanh T.
    Vinikoor, Lisa C.
    Lee, R. Anthony
    Koch-Paiz, Christine A.
    Ahn, Jaeyong
    Reimers, Mark
    Chen, Yidong
    Scudiero, Dominic A.
    Weinstein, John N.
    Trent, Jeffrey M.
    Bittner, Michael L.
    Meltzer, Paul S.
    Fornace, Albert J., Jr.
    [J]. CANCER RESEARCH, 2008, 68 (02) : 415 - 424
  • [4] Deep learning for drug response prediction in cancer
    Baptista, Delora
    Ferreira, Pedro G.
    Rocha, Miguel
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) : 360 - 379
  • [5] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [6] Barrett Tyson, 2024, CRAN
  • [7] Baudino Troy A, 2015, Curr Drug Discov Technol, V12, P3
  • [8] How rapid advances in imaging are defining the future of precision radiation oncology
    Beaton, Laura
    Bandula, Steve
    Gaze, Mark N.
    Sharma, Ricky A.
    [J]. BRITISH JOURNAL OF CANCER, 2019, 120 (08) : 779 - 790
  • [9] Bratman SV, 2017, LANCET ONCOL, V18, pE238, DOI 10.1016/S1470-2045(17)30263-2
  • [10] A community effort to assess and improve drug sensitivity prediction algorithms
    Costello, James C.
    Heiser, Laura M.
    Georgii, Elisabeth
    Gonen, Mehmet
    Menden, Michael P.
    Wang, Nicholas J.
    Bansal, Mukesh
    Ammad-ud-din, Muhammad
    Hintsanen, Petteri
    Khan, Suleiman A.
    Mpindi, John-Patrick
    Kallioniemi, Olli
    Honkela, Antti
    Aittokallio, Tero
    Wennerberg, Krister
    Collins, James J.
    Gallahan, Dan
    Singer, Dinah
    Saez-Rodriguez, Julio
    Kaski, Samuel
    Gray, Joe W.
    Stolovitzky, Gustavo
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (12) : 1202 - U57