Double point curves for corank 2 map germs from C2 to C3

被引:17
|
作者
Marar, W. L. [2 ]
Nuno-Ballesteros, J. J. [1 ]
Penafort-Sanchis, G. [1 ]
机构
[1] Univ Valencia, Dept Geometria & Topol, E-46100 Burjassot, Spain
[2] Univ Sao Paulo, ICMC, BR-13560970 Sao Carlos, SP, Brazil
关键词
Finite determinacy; Whitney equisingularity; Symmetric variables; FINITE DETERMINACY; EQUISINGULARITY; SINGULARITIES; SURFACES; 3-SPACE;
D O I
10.1016/j.topol.2011.09.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor number mu(D(f)) of the double point curve D(f) in (C-2, 0) and we provide an explicit description of the double point scheme in terms of elementary symmetric functions. Also we prove that the Whitney equisingularity of 1-parameter families of map germs f(t) : (C-2, 0) -> (C-3, 0) is equivalent to the constancy of both mu(D(f(t))) and mu(f(t)(C-2)boolean AND H) with respect to t, where H subset of C-3 is a generic plane. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:526 / 536
页数:11
相关论文
共 50 条
  • [1] SLICING CORANK 1 MAP GERMS FROM C2 TO C3
    Marar, W. L.
    Nuno-Ballesteros, J. J.
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (04): : 1375 - 1395
  • [2] Equimultiplicity of Families of Map Germs from C2 to C3
    Silva, O. N.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 429 - 447
  • [3] ON MOND'S CLASSIFICATION OF SIMPLE MAP GERMS FROM C2 TO C3
    Binyamin, Muhammad Ahsan
    Mehmood, Khawar
    Pfister, Gerhard
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (08): : 1109 - 1119
  • [4] Polar multiplicities and equisingularity of map germs from C3 to C3
    Pérez, VHJ
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (04): : 901 - 924
  • [5] On the classification of multi-germs of maps from C2 to C3 under A-equivalence
    Atique, RW
    REAL AND COMPLEX SINGULARITIES, 2000, 412 : 119 - 133
  • [6] CHEMILUMINESCENCE FROM C2 PRODUCED BY C3 OXIDATION
    MANN, DM
    CHEMICAL PHYSICS LETTERS, 1977, 47 (01) : 106 - 107
  • [7] TRANSITIVE SUBMANIFOLDS OF C2 AND C3
    SVEC, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1973, 23 (02) : 306 - 338
  • [8] ADDITIONAL FORMS OF C2 AND C3
    KOETHE, S
    GIGLI, I
    AUSTEN, KF
    FEDERATION PROCEEDINGS, 1971, 30 (02) : A472 - &
  • [9] Geometry and equisingularity of finitely determined map germs from to Cn to C3, n > 2
    Miranda, A. J.
    Jorge Perez, V. H.
    Rizziolli, E. C.
    Saia, M. J.
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02): : 439 - 454
  • [10] Classification of Holomorphic Mappings of Hyperquadrics from C2 to C3
    Reiter, Michael
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) : 1370 - 1414