An extension principle for the Einstein-Vlasov system in spherical symmetry

被引:27
作者
Dafermos, M
Rendall, AD
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
来源
ANNALES HENRI POINCARE | 2005年 / 6卷 / 06期
关键词
D O I
10.1007/s00023-005-0235-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that "first singularities" in the non-trapped region of the maximal development of spherically symmetric asymptotically flat data for the Einstein-Vlasov system must necessarily emanate from the center. The notion of "first" depends only on the causal structure and can be described in the language of terminal indecomposable pasts (TIPs). This result suggests a local approach to proving weak cosmic censorship for this system. It can also be used to give the first proof of the formation of black holes by the collapse of collisionless matter from regular initial configurations.
引用
收藏
页码:1137 / 1155
页数:19
相关论文
共 14 条
[1]   FR CAUCHY-PROBLEM FOR EINSTEIN-LIOUVILLE DIFFERENTIAL INTEGRAL SYSTEM [J].
CHOQUETBRUHAT, Y .
ANNALES DE L INSTITUT FOURIER, 1971, 21 (03) :181-+
[2]   SELF-GRAVITATING RELATIVISTIC FLUIDS - A 2-PHASE MODEL [J].
CHRISTODOULOU, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 130 (04) :343-400
[3]   On the global initial value problem and the issue of singularities [J].
Christodoulou, D .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (12A) :A23-A35
[4]   The instability of naked singularities in the gravitational collapse of a scaler field [J].
Christodoulou, D .
ANNALS OF MATHEMATICS, 1999, 149 (01) :183-217
[5]   Spherically symmetric spacetimes with a trapped surface [J].
Dafermos, M .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (11) :2221-2232
[6]   IDEAL POINTS IN SPACE-TIME [J].
GEROCH, R ;
PENROSE, R ;
KRONHEIMER, EH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 327 (1571) :545-+
[7]  
HARTMAN P, 1992, ORDINARY DIFFERENTIA
[8]   A REGULARITY THEOREM FOR SOLUTIONS OF THE SPHERICALLY SYMMETRICAL VLASOV-EINSTEIN SYSTEM [J].
REIN, G ;
RENDALL, AD ;
SCHAEFFER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (03) :467-478
[9]   GLOBAL EXISTENCE OF SOLUTIONS OF THE SPHERICALLY SYMMETRICAL VLASOV-EINSTEIN SYSTEM WITH SMALL INITIAL DATA [J].
REIN, G ;
RENDALL, AD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (03) :561-583
[10]   Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data (vol 150, pg 561, 1992) [J].
Rein, G ;
Rendall, AD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :475-478