Liquid-solid mass transfer to a rotating mesh electrode in a rotor-stator spinning disc configuration

被引:16
作者
Mendoza, P. Granados [1 ]
Weusten, S. J. C. [1 ]
de Groot, M. T. [2 ]
Keurentjes, J. T. F. [1 ]
Schouten, J. C. [1 ]
van der Schaaf, J. [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] Akzo Nobel Ind Chem BV, Amsterdam, Netherlands
关键词
Rotor-stator spinning disc reactor; Rotating mesh electrode; Mass transfer coefficient; Limiting current density method; HEAT-TRANSFER; GAS;
D O I
10.1016/j.ijheatmasstransfer.2016.08.076
中图分类号
O414.1 [热力学];
学科分类号
摘要
Here we present the mass transfer coefficient for liquid-solid mass transfer to a rotating mesh electrode and a smooth flat disc electrode in a rotor-stator spinning disc reactor. The mass transfer coefficients are measured with the limiting current density technique. Additionally, the torque is measured and the energy dissipation rate in the system is calculated. The volumetric mass transfer coefficient of the mesh electrode increases a factor 5 compared to that of the flat disc electrode at virtually equal energy dissipation rates. Due to the characteristics of the mesh, the mesh electrode offers 2.77 times higher electrode area than the flat disc. The mass transfer coefficients measured for the rotating mesh electrode are a factor 1.74 higher compared to the flat disc. Average Sherwood numbers are reported and a correlation is presented that predicts mass transfer rates of rotating meshes in rotor-stator spinning disc reactor configurations. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:650 / 657
页数:8
相关论文
共 46 条
  • [21] The mixing sensitivity of toluene and ethylbenzene sulfonation using fuming sulfuric acid studied in a rotor-stator spinning disc reactor
    van Kouwen, E. R.
    Winkenwerder, W.
    Brentzel, Z.
    Joyce, B.
    Pagano, T.
    Jovic, S.
    Bargeman, G.
    van der Schaaf, J.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2021, 160
  • [22] Single-Phase Flow Residence-Time Distributions in a Rotor-Stator Spinning Disc Reactor
    Haseidl, Franz
    Koenig, Peter
    Hinrichsen, Olaf
    CHEMICAL ENGINEERING & TECHNOLOGY, 2016, 39 (12) : 2435 - 2443
  • [23] Extraction of chromium (III) from aqueous waste solution in a novel rotor-stator spinning disc reactor
    Wang, Yubin
    Li, Jun
    Jin, Yang
    Chen, Ming
    Ma, Rui
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2020, 149
  • [24] General Applicable Residence Time Distribution Model to Estimate Reaction Rates in a Rotor-Stator Spinning Disc Reactor
    Meeuwse, Petra
    van Lieshout, Marit
    CHEMENGINEERING, 2025, 9 (01)
  • [25] Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
    Papa, M.
    Srinivasan, V.
    Goldstein, R. J.
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2012, 134 (04):
  • [26] FILM COOLING EFFECT OF ROTOR-STATOR PURGE FLOW ON ENDWALL HEAT/MASS TRANSFER
    Papa, M.
    Srinivasan, V.
    Goldstein, R. J.
    PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 4, PTS A AND B, 2010, : 1729 - 1738
  • [27] Multiplicity Behavior of Trickle Flow Liquid-Solid Mass Transfer
    Joubert, Rita
    Nicol, Willie
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (18) : 8387 - 8392
  • [28] Liquid-solid mass transfer behaviour of a fixed bed airlift reactor
    Harraz, A. A.
    El Gheriany, I. A.
    Abdel-Aziz, M. H.
    Zewail, T. M.
    Konsowa, A. H.
    Sedahmed, G. H.
    BIOCHEMICAL ENGINEERING JOURNAL, 2015, 103 : 1 - 11
  • [29] Modelling of transient mass transfer in liquid and liquid-solid pulsating systems: Applications and extension to heat transfer
    Maucci, E
    Martinuzzi, RJ
    Briens, CL
    Wild, G
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2001, 79 (03) : 329 - 340
  • [30] Liquid-solid mass and heat transfer behavior of a concentric tube airlift reactor
    Abdel-Aziz, M. H.
    Nirdosh, I.
    Sedahmed, G. H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 58 (1-2) : 735 - 739