Pairing and quantum double of multiplier Hopf algebras

被引:49
作者
Drabant, B [1 ]
Van Daele, A [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
关键词
multiplier algebras; Hopf algebras; pairing; quantum double;
D O I
10.1023/A:1011470032416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and investigate pairings of multiplier Hopf (*-)algebras which are nonunital generalizations of Hopf algebras. Dual pairs of multiplier Hopf algebras arise naturally from any multiplier Hopf algebra A with integral and its dual Â. Pairings of multiplier Hopf algebras play a basic rôle, e.g., in the study of actions and coactions, and, in particular, in the relation between them. This aspect of the theory is treated elsewhere. In this paper we consider the quantum double construction out of a dual pair of multiplier Hopf algebras. We show that two dually paired regular multiplier Hopf (*-)algebras A and B yield a quantum double which is again a regular multiplier Hopf (*-)algebra. If A and B have integrals, then the quantum double also has an integral. If A and B are Hopf algebras, then the quantum double multiplier Hopf algebra is the usual quantum double. The quantum double construction for dually paired multiplier Hopf (*-)algebras yields new nontrivial exa mples of multiplier Hopf (*-)algebras.
引用
收藏
页码:109 / 132
页数:24
相关论文
共 27 条
[1]  
AMSUDA T, 1995, WORKSH QUANT GROUPS
[2]  
BAAJ S, 1993, ANN SCI ECOLE NORM S, V26, P425
[3]   CQG ALGEBRAS - A DIRECT ALGEBRAIC APPROACH TO COMPACT QUANTUM GROUPS [J].
DIJKHUIZEN, MS ;
KOORNWINDER, TH .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (04) :315-330
[4]   Actions of multiplier Hopf algebras [J].
Drabant, B ;
Van Daele, A ;
Zhang, YH .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) :4117-4172
[5]  
Drinfel'd V. G., 1987, P INT C MATHEMATICIA, V1, P798
[6]  
Effros E. G., 1994, INT J MATH, V5, P681, DOI DOI 10.1142/s0129167x94000358
[7]   TORTILE YANG-BAXTER OPERATORS IN TENSOR CATEGORIES [J].
JOYAL, A ;
STREET, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 71 (01) :43-51
[8]   C*-algebraic quantum groups arising from algebraic quantum groups [J].
Kustermans, J ;
Van Daele, A .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (08) :1067-1139
[9]   QUASITRIANGULAR HOPF-ALGEBRAS AND YANG-BAXTER EQUATIONS [J].
MAJID, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (01) :1-91
[10]   DOUBLES OF QUASI-TRAINGULAR HOPF-ALGEBRAS [J].
MAJID, S .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (11) :3061-3073