A new global empirical NmF2 model for operational use in radio systems

被引:37
作者
Hoque, M. M. [1 ]
Jakowski, N. [1 ]
机构
[1] German Aerosp Ctr, Inst Commun & Nav, D-17235 Neustrelitz, Germany
基金
美国国家航空航天局; 美国国家科学基金会; 美国海洋和大气管理局;
关键词
IONOSPHERIC ELECTRON-DENSITY; OCCULTATION MEASUREMENTS; GEOMAGNETIC CONTROL; F-REGION; STORM; MAPS; DIFFUSION; PROFILES; NEQUICK; CHAMP;
D O I
10.1029/2011RS004807
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ionospheric F2 region around the peak electron density height hmF2 of about 250-500 km causes the most pronounced impact on transionospheric radio wave propagation. Therefore, the peak electron density of the F2 layer NmF2 is a key parameter for characterizing the ionosphere. We present an empirical model approach that allows determining global NmF2 with a limited number of model coefficients. The nonlinear approach needs 13 coefficients and a few empirically fixed parameters for describing the NmF2 dependencies on local time, geographic/geomagnetic location and solar irradiance and activity. The model approach is applied to a vast quantity of global NmF2 data derived from GNSS radio occultation measurements by CHAMP, GRACE and COSMIC satellite missions and about 60 years of processed NmF2 data from 177 worldwide ionosonde stations. The model fits to these input data with the same standard and root mean squared (RMS) deviations of 2 x 10(11) m(-3). The proposed Neustrelitz global NmF2 model (Neustrelitz Peak Density Model - NPDM) is climatological, i.e., the model describes the average behavior under quiet geomagnetic conditions. A preliminary comparison with the electron density NeQuick model reveals similar results for NmF2 with RMS deviations in the order of 2 x 10(11) m(-3) and 5 x 10(11) m(-3) for low and high solar activity conditions, respectively.
引用
收藏
页数:13
相关论文
共 61 条
[1]   Modeling ionospheric foF2 by using empirical orthogonal function analysis [J].
A, E. ;
Zhang, D. -H. ;
Xiao, Z. ;
Hao, Y. -Q. ;
Ridley, A. J. ;
Moldwin, M. .
ANNALES GEOPHYSICAE, 2011, 29 (08) :1501-1515
[2]  
Alonso C., 2001, 3 INT S INT AC ASTR
[3]   First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM) [J].
Angling, M. J. .
ANNALES GEOPHYSICAE, 2008, 26 (02) :353-359
[4]  
[Anonymous], 1988, Adv. Space Res., DOI DOI 10.1016/0273-1177(88)90238-4
[5]  
[Anonymous], 1990, 9022 NAT SPAC SCI DA
[6]   International Reference Ionosphere 2007: Improvements and new parameters [J].
Bilitza, D. ;
Reinisch, B. W. .
ADVANCES IN SPACE RESEARCH, 2008, 42 (04) :599-609
[7]   International Reference Ionosphere 2000 [J].
Bilitza, D .
RADIO SCIENCE, 2001, 36 (02) :261-275
[8]  
Bradley P.A., 1990, Adv. Space Res., V10, P47
[9]   DIFFUSION + ELECTROMAGNETIC DRIFT IN EQUATORIAL F2 REGION [J].
BRAMLEY, EN ;
PEART, M .
JOURNAL OF GEOPHYSICAL RESEARCH, 1964, 69 (21) :4609-+
[10]   Topside electron density in IRI and NeQuick:: Features and limitations [J].
Coisson, P. ;
Radicella, S. M. ;
Leitinger, R. ;
Nava, B. .
ADVANCES IN SPECIFYING PLASMA TEMPERATURES AND ION COMPOSITION IN THE IONOSPHERE, 2006, 37 (05) :937-942