Role of radiomics in the diagnosis and treatment of gastrointestinal cancer

被引:0
作者
Mao, Qi [1 ]
Zhou, Mao-Ting [1 ]
Zhao, Zhang-Ping [2 ]
Liu, Ning [1 ]
Yang, Lin [1 ]
Zhang, Xiao-Ming [1 ]
机构
[1] North Sichuan Med Coll, Affiliated Hosp, Dept Radiol, 63 Wenhua Rd, Nanchong 637000, Sichuan, Peoples R China
[2] Panzhihua Cent Hosp, Dept Radiol, Panzhihua 617000, Sichuan, Peoples R China
关键词
Gastrointestinal cancer; Diagnosis; Treatment; Radiomics; Therapeutic response; Hepatocellular carcinoma; CT-BASED RADIOMICS; CONTRAST-ENHANCED CT; PATHOLOGICAL COMPLETE RESPONSE; ADVANCED RECTAL-CANCER; LYMPH-NODE METASTASIS; CONVOLUTIONAL NEURAL-NETWORK; PREDICT TREATMENT RESPONSE; SQUAMOUS-CELL CARCINOMA; ADVANCED GASTRIC-CANCER; COLORECTAL-CANCER;
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Gastrointestinal cancer (GIC) has high morbidity and mortality as one of the main causes of cancer death. Preoperative risk stratification is critical to guide patient management, but traditional imaging studies have difficulty predicting its biological behavior. The emerging field of radiomics allows the conversion of potential pathophysiological information in existing medical images that cannot be visually recognized into high-dimensional quantitative image features. Tumor lesion characterization, therapeutic response evaluation, and survival prediction can be achieved by analyzing the relationships between these features and clinical and genetic data. In recent years, the clinical application of radiomics to GIC has increased dramatically. In this editorial, we describe the latest progress in the application of radiomics to GIC and discuss the value of its potential clinical applications, as well as its limitations and future directions.
引用
收藏
页数:16
相关论文
共 157 条
  • [1] Interrater reliability and agreement of the liver imaging reporting and data system (LI-RADS) v2018 for the evaluation of hepatic lesions
    Abdelrahman, Ahmed S.
    Madkour, Sherihan S.
    Ekladious, Mena E. Y.
    [J]. POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E316 - E324
  • [2] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] Incorporation of pre-therapy 18F-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis
    Anthony, Gregory J.
    Cunliffe, Alexandra
    Castillo, Richard
    Pham, Ngoc
    Guerrero, Thomas
    Armato, Samuel G., III
    Al-Hallaq, Hania A.
    [J]. MEDICAL PHYSICS, 2017, 44 (07) : 3686 - 3694
  • [4] Imaging of liver cancer
    Ariff, Ben
    Lloyd, Claire R.
    Khan, Sameer
    Shariff, Mohamed
    Thillainayagam, Andrew V.
    Bansi, Devinder S.
    Khan, Shahid A.
    Taylor-Robinson, Simon D.
    Lim, Adrian K. P.
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2009, 15 (11) : 1289 - 1300
  • [5] Long-term Results of the "Liver First" Approach in Patients With Locally Advanced Rectal Cancer and Synchronous Liver Metastases
    Ayez, Ninos
    Burger, Jacobus W. A.
    van der Pool, Anne E.
    Eggermont, Alexander M. M.
    Grunhagen, Dirk J.
    de Wilt, Johannes H. W.
    Verhoef, Cornelis
    [J]. DISEASES OF THE COLON & RECTUM, 2013, 56 (03) : 281 - 287
  • [6] Babic B, 2020, CHIRURG, V91, P379, DOI 10.1007/s00104-020-01150-6
  • [7] Whole-volume vs. segmental CT texture analysis of the liver to assess metachronous colorectal liver metastases
    Beckers, R. C. J.
    Beets-Tan, R. G. H.
    Schnerr, R. S.
    Maas, M.
    da Costa Andrade, L. A.
    Beets, G. L.
    Dejong, C. H.
    Houwers, J. B.
    Lambregts, D. M. J.
    [J]. ABDOMINAL RADIOLOGY, 2017, 42 (11) : 2639 - 2645
  • [8] Whole liver CT texture analysis to predict the development of colorectal liver metastases-A multicentre study
    Beckers, Rianne C. J.
    Lambregts, Doenja M. J.
    Schnerr, Roald S.
    Maas, Monique
    Rao, Sheng-Xiang
    Kessels, Alfons G. H.
    Thywissen, Thomas
    Beets, Geerard L.
    Trebeschi, Stefano
    Houwers, Janneke B.
    Dejong, Cornelis H.
    Verhoef, Cornelis
    Beets-Tan, Regina G. H.
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2017, 92 : 64 - 71
  • [9] Prediction of Non-Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer Patients with 18F-FDG PET Radiomics Based Machine Learning Classification
    Beukinga, Roelof J.
    Poelmann, Floris B.
    Kats-Ugurlu, Gursah
    Viddeleer, Alain R.
    Boellaard, Ronald
    De Haas, Robbert J.
    Plukker, John Th M.
    Hulshoff, Jan Binne
    [J]. DIAGNOSTICS, 2022, 12 (05)
  • [10] Performance of CT-based radiomics in diagnosis of superior mesenteric vein resection margin in patients with pancreatic head cancer
    Bian, Yun
    Jiang, Hui
    Ma, Chao
    Cao, Kai
    Fang, Xu
    Li, Jing
    Wang, Li
    Zheng, Jianming
    Lu, Jianping
    [J]. ABDOMINAL RADIOLOGY, 2020, 45 (03) : 759 - 773