On-demand Time-decaying Bloom Filters for Telemarketer Detection

被引:15
|
作者
Bianchi, Giuseppe [1 ]
d'Heureuse, Nico [1 ]
Niccolini, Saverio [1 ]
机构
[1] Univ Roma Tor Vergata, CNIT, I-00173 Rome, Italy
关键词
Algorithms; Design; Performance; Measurement; Rate metering; Bloom filters; monitoring; VoIP; spam; telemarketing detection;
D O I
10.1145/2043165.2043167
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Several traffic monitoring applications may benefit from the availability of efficient mechanisms for approximately tracking smoothed time averages rather than raw counts. This paper provides two contributions in this direction. First, our analysis of Time-decaying Bloom filters, formerly proposed data structures devised to perform approximate Exponentially Weighted Moving Averages on streaming data, reveals two major shortcomings: biased estimation when measurements are read in arbitrary time instants, and slow operation resulting from the need to periodically update all the filter's counters at once. We thus propose a new construction, called On-demand Time-decaying Bloom filter, which relies on a continuous-time operation to overcome the accuracy/performance limitations of the original window-based approach. Second, we show how this new technique can be exploited in the design of high performance stream-based monitoring applications, by developing VoIPSTREAM, a proof-of-concept real-time analysis version of a formerly proposed system for telemarketing call detection. Our validation results, carried out over real telephony data, show how VoIPSTREAM closely mimics the feature extraction process and traffic analysis techniques implemented in the offine system, at a significantly higher processing speed, and without requiring any storage of per-user call detail records.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 50 条