Transience of Edge-Reinforced Random Walk

被引:26
作者
Disertori, Margherita [1 ,2 ]
Sabot, Christophe [3 ]
Tarres, Pierre [4 ,5 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Univ Bonn, Hausdorff Ctr Math, D-53115 Bonn, Germany
[3] Univ Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[4] Univ Paris 09, CEREMADE, CNRS UMR 7534, F-75775 Paris 16, France
[5] Univ Paris 09, F-75775 Paris 16, France
关键词
JUMP-PROCESSES; TREES; LOCALIZATION; GRAPHS;
D O I
10.1007/s00220-015-2392-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show transience of the edge-reinforced random walk (ERRW) for small reinforcement in dimension . This proves the existence of a phase transition between recurrent and transient behavior, thus solving an open problem stated by Diaconis in 1986. The argument adapts the proof of quasi-diffusive behavior of the supersymmetric (SuSy) hyperbolic model for fixed conductances by Disertori et al. (Commun Math Phys 300:435-486, 2010), using the representation of ERRW as a mixture of vertex-reinforced jump processes (VRJP) with independent gamma conductances, and the interpretation of the limit law of VRJP as a SuSy hyperbolic sigma model developed by Sabot and TarrSs (J Eur Math Soc, arXiv:1111.3991, 2015).
引用
收藏
页码:121 / 148
页数:28
相关论文
共 14 条
[1]   LOCALIZATION FOR LINEARLY EDGE REINFORCED RANDOM WALKS [J].
Angel, Omer ;
Crawford, Nicholas ;
Kozma, Gady .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (05) :889-921
[2]   Limit theorems for reinforced random walks on certain trees [J].
Collevecchio, Andrea .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (01) :81-101
[3]  
COPPERSMITH D, 1986, RANDOM WALKS R UNPUB
[4]   Vertex-reinforced jump processes on trees and finite graphs [J].
Davis, B ;
Volkov, S .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 128 (01) :42-62
[5]   Continuous time vertex-reinforced jump processes [J].
Davis, B ;
Volkov, S .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (02) :281-300
[6]   Anderson Localization for a Supersymmetric Sigma Model [J].
Disertori, M. ;
Spencer, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (03) :659-671
[7]   Quasi-Diffusion in a 3D Supersymmetric Hyperbolic Sigma Model [J].
Disertori, M. ;
Spencer, T. ;
Zirnbauer, M. R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (02) :435-486
[8]  
Disertori M., 2011, THESIS
[9]  
Keane M.S., 1999, INFIN DIMENS ANAL QU, P217
[10]  
Lyons Russell., 2012, Probability on trees and networks