Break-even concentration and periodic behavior of a stochastic chemostat model with seasonal fluctuation

被引:16
作者
Zhao, Dianli [1 ]
Yuan, Sanling [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 46卷
关键词
Stochastic chemostat model; Break-even concentration; Periodic solution; Global attractivity; COMPETING MICROBIAL-POPULATIONS; NUTRIENT COMPETITION; MATHEMATICAL-MODEL; CONTINUOUS-CULTURE; GROWTH; MICROORGANISMS; COEXISTENCE; EXCLUSION; REACTOR;
D O I
10.1016/j.cnsns.2016.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper formulates a single-species stochastic chemostat model with periodic coefficients due to seasonal fluctuation. When the noise is small, a modified break-even concentration is identified, whose value below or above the averaged concentration of the input nutrient can completely determine whether the microorganism will persist or not, where an accuracy decay rate is given for extinction. In case of persistence, existence of the random positive periodic solution is proved for the considered model. Further, the random periodic solution is shown to be globally attractive under some mild extra condition. The periodic dynamics obtained in this paper are supported by computer simulations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 73
页数:12
相关论文
共 34 条
[1]   A MATHEMATICAL MODEL FOR CONTINUOUS CULTURE OF MICROORGANISMS UTILIZING INHIBITORY SUBSTRATES [J].
ANDREWS, JF .
BIOTECHNOLOGY AND BIOENGINEERING, 1968, 10 (06) :707-+
[2]  
[Anonymous], 1995, THEORY CHEMOSTAT DYN
[3]   A MATHEMATICAL-MODEL OF THE CHEMOSTAT WITH PERIODIC WASHOUT RATE [J].
BUTLER, GJ ;
HSU, SB ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (03) :435-449
[4]   COEXISTENCE OF COMPETING PREDATORS IN A CHEMOSTAT [J].
BUTLER, GJ ;
HSU, SB ;
WALTMAN, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1983, 17 (02) :133-151
[5]   Stochastic modeling of the chemostat [J].
Campillo, F. ;
Joannides, M. ;
Larramendy-Valverde, I. .
ECOLOGICAL MODELLING, 2011, 222 (15) :2676-2689
[6]   Analysis and Approximation of a Stochastic Growth Model with Extinction [J].
Campillo, Fabien ;
Joannides, Marc ;
Larramendy-Valverde, Irene .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (02) :499-515
[7]   Dynamics of a stochastic model for continuous flow bioreactor with Contois growth rate [J].
Chen, Zhenzhen ;
Zhang, Tonghua .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (03) :1076-1091
[8]   An invariant observer for a chemostat model [J].
Didi, Ibtissem ;
Dib, Hacen ;
Cherki, Brahim .
AUTOMATICA, 2014, 50 (09) :2321-2326
[9]   New result on the model-based biological control of the chemostat [J].
Dimitrova, Neli S. ;
Krastanov, Mikhail I. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 :686-694
[10]   On the stability of a periodic solution of distributed parameters biochemical system [J].
Drame, Abdou K. ;
Mazenc, Frederic ;
Wolenski, Peter R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) :196-213