1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs

被引:60
作者
Hensel, Sebastian [1 ]
Przytycki, Piotr [2 ,3 ]
Webb, Richard C. H. [4 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[3] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
[4] UCL, Dept Math, London WC1E 6BT, England
关键词
Gromov hyperbolic; slim triangle; curve graph; arc graph; unicorn; KLEINIAN SURFACE GROUPS; GEOMETRY; CLASSIFICATION; CONNECTIVITY; DIMENSION; COMPLEX; SPACE;
D O I
10.4171/JEMS/517
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe unicorn paths in the arc graph and show that they form 1-slim triangles and are invariant under taking subpaths. We deduce that all arc graphs are 7-hyperbolic. Considering the same paths in the arc and curve graph, this also shows that all curve graphs are 17-hyperbolic, including closed surfaces.
引用
收藏
页码:755 / 762
页数:8
相关论文
共 26 条
  • [1] Alonso J, 1990, GROUP THEORY GEOMETR, V1991, P3
  • [2] Uniform hyperbolicity of the graphs of curves
    Aougab, Tarik
    [J]. GEOMETRY & TOPOLOGY, 2013, 17 (05) : 2855 - 2875
  • [3] Geometry and rigidity of mapping class groups
    Behrstock, Jason
    Kleiner, Bruce
    Minsky, Yair
    Mosher, Lee
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (02) : 781 - 888
  • [4] Dimension and rank for mapping class groups
    Behrstock, Jason A.
    Minsky, Yair N.
    [J]. ANNALS OF MATHEMATICS, 2008, 167 (03) : 1055 - 1077
  • [5] Intersection numbers and the hyperbolicity of the curve conplex
    Bowditch, Brian H.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 598 : 105 - 129
  • [6] UNIFORM HYPERBOLICITY OF THE CURVE GRAPHS
    Bowditch, Brian H.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2014, 269 (02) : 269 - 280
  • [7] Bridson M, 2009, METRIC SPACES NONPOS
  • [8] The classification of Kleinian surface groups, II: The Ending Lamination Conjecture
    Brock, Jeffrey F.
    Canary, Richard D.
    Minsky, Yair N.
    [J]. ANNALS OF MATHEMATICS, 2012, 176 (01) : 1 - 149
  • [9] Uniform hyperbolicity of the curve graph via surgery sequences
    Clay, Matt
    Rafi, Kasra
    Schleimer, Saul
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (06): : 3325 - 3344
  • [10] On the topology of ending lamination space
    Gabai, David
    [J]. GEOMETRY & TOPOLOGY, 2014, 18 (05) : 2683 - 2745