1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs

被引:63
作者
Hensel, Sebastian [1 ]
Przytycki, Piotr [2 ,3 ]
Webb, Richard C. H. [4 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[3] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
[4] UCL, Dept Math, London WC1E 6BT, England
关键词
Gromov hyperbolic; slim triangle; curve graph; arc graph; unicorn; KLEINIAN SURFACE GROUPS; GEOMETRY; CLASSIFICATION; CONNECTIVITY; DIMENSION; COMPLEX; SPACE;
D O I
10.4171/JEMS/517
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe unicorn paths in the arc graph and show that they form 1-slim triangles and are invariant under taking subpaths. We deduce that all arc graphs are 7-hyperbolic. Considering the same paths in the arc and curve graph, this also shows that all curve graphs are 17-hyperbolic, including closed surfaces.
引用
收藏
页码:755 / 762
页数:8
相关论文
共 26 条
[1]  
Alonso J, 1990, GROUP THEORY GEOMETR, V1991, P3
[2]   Uniform hyperbolicity of the graphs of curves [J].
Aougab, Tarik .
GEOMETRY & TOPOLOGY, 2013, 17 (05) :2855-2875
[3]   Geometry and rigidity of mapping class groups [J].
Behrstock, Jason ;
Kleiner, Bruce ;
Minsky, Yair ;
Mosher, Lee .
GEOMETRY & TOPOLOGY, 2012, 16 (02) :781-888
[4]   Dimension and rank for mapping class groups [J].
Behrstock, Jason A. ;
Minsky, Yair N. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :1055-1077
[5]   Intersection numbers and the hyperbolicity of the curve conplex [J].
Bowditch, Brian H. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 598 :105-129
[6]   UNIFORM HYPERBOLICITY OF THE CURVE GRAPHS [J].
Bowditch, Brian H. .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 269 (02) :269-280
[7]  
Bridson M, 2009, METRIC SPACES NONPOS
[8]   The classification of Kleinian surface groups, II: The Ending Lamination Conjecture [J].
Brock, Jeffrey F. ;
Canary, Richard D. ;
Minsky, Yair N. .
ANNALS OF MATHEMATICS, 2012, 176 (01) :1-149
[9]   Uniform hyperbolicity of the curve graph via surgery sequences [J].
Clay, Matt ;
Rafi, Kasra ;
Schleimer, Saul .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (06) :3325-3344
[10]   On the topology of ending lamination space [J].
Gabai, David .
GEOMETRY & TOPOLOGY, 2014, 18 (05) :2683-2745