Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound LyticTransglycosylase from Pseudomonas aeruginosa

被引:23
|
作者
Dominguez-Gil, Teresa [1 ]
Lee, Mijoon [2 ]
Acebron-Avalos, Ivan [1 ]
Mahasenan, Kiran V. [2 ]
Hesek, Dusan [2 ]
Dik, David A. [2 ]
Byun, Byungjin [2 ]
Lastochkin, Elena [2 ]
Fisher, Jed F. [2 ]
Mobashery, Shahriar [2 ]
Hermoso, Juan A. [1 ]
机构
[1] CSIC, Inst Quim Fis Rocasolano, Dept Cristalog & Biol Estruct, Serrano 119, E-28006 Madrid, Spain
[2] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
关键词
BETA-LACTAM RESISTANCE; ESCHERICHIA-COLI; LYTIC TRANSGLYCOSYLASE; NEISSERIA-GONORRHOEAE; MUREIN HYDROLASES; AMPD HOMOLOGS; PEPTIDOGLYCAN; VIRULENCE; PROTEINS; BINDING;
D O I
10.1016/j.str.2016.07.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteria grow and divide without loss of cellular integrity. This accomplishment is notable, as a key component of their cell envelope is a surrounding glycopeptide polymer. In Gram-negative bacteria this polymer-the peptidoglycan-grows by the difference between concurrent synthesis and degradation. The regulation of the enzymatic ensemble for these activities is poorly understood. We report herein the structural basis for the control of one such enzyme, the lytic transglycosylase MltF of Pseudomonas aeruginosa. Its structure comprises two modules: an ABC-transporter-like regulatory module and a catalytic module. Occupancy of the regulatory module by peptidoglycan-derived muro-peptides effects a dramatic and long-distance (40 angstrom) conformational change, occurring over the entire protein structure, to open its active site for catalysis. This discovery of the molecular basis for the allosteric control of MltF catalysis is foundational to further study of MltF within the complex enzymatic orchestration of the dynamic peptidoglycan.
引用
收藏
页码:1729 / 1741
页数:13
相关论文
共 50 条
  • [41] In vitro studies of the protein-interaction network of cell-wall lytic transglycosylase RlpA of Pseudomonas aeruginosa
    Avila-Cobian, Luis F.
    De Benedetti, Stefania
    Kim, Choon
    Feltzer, Rhona
    Champion, Matthew M.
    Fisher, Jed F.
    Mobashery, Shahriar
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [42] SOLUBILIZATION OF CELL-WALL BOUND, THERMOSTABLE PECTINESTERASE FROM VALENCIA ORANGE
    WICKER, L
    VASSALLO, MR
    ECHEVERRIA, EJ
    JOURNAL OF FOOD SCIENCE, 1988, 53 (04) : 1171 - +
  • [43] Conserved mechanism of cell-wall synthase regulation revealed by the identification of a new PBP activator in Pseudomonas aeruginosa
    Greene, Neil G.
    Fumeaux, Coralie
    Bernhardt, Thomas G.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (12) : 3150 - 3155
  • [44] Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall
    Timmers, Jaap
    Vernhettes, Samantha
    Desprez, Thierry
    Vincken, Jean-Paul
    Visser, Richard G. F.
    Trindade, Luisa M.
    FEBS LETTERS, 2009, 583 (06) : 978 - 982
  • [46] Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis
    Edwards, ME
    Dickson, CA
    Chengappa, S
    Sidebottom, C
    Gidley, MJ
    Reid, JSG
    PLANT JOURNAL, 1999, 19 (06): : 691 - 697
  • [47] Stimulation of cell surface plasminogen activation by membrane-bound melanotransferrin:: A key phenomenon for cell invasion
    Michaud-Levesque, J
    Demeule, M
    Béliveau, R
    EXPERIMENTAL CELL RESEARCH, 2005, 308 (02) : 479 - 490
  • [48] ALLOHYDROXY-D-PROLINE DEHYDROGENASE - INDUCIBLE MEMBRANE-BOUND ENZYME IN PSEUDOMONAS-AERUGINOSA PA01
    BATER, AJ
    VENABLES, WA
    THOMAS, S
    ARCHIVES OF MICROBIOLOGY, 1977, 112 (03) : 287 - 289
  • [50] CHARACTERISTICS OF GLUCOSE-UPTAKE AND CELL-WALL ENVELOPE COMPOSITION IN L-FORMS OF PSEUDOMONAS-AERUGINOSA
    BRANFORDWHITE, CJ
    ROWE, PS
    HORSMAN, MR
    SPICER, AB
    MICROBIOS LETTERS, 1977, 5 (18): : 67 - 70