An Axiomatic Approach to Time-Dependent Shortest Path Oracles

被引:2
作者
Kontogiannis, Spyros [1 ,2 ]
Wagner, Dorothea [3 ]
Zaroliagis, Christos [2 ,4 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] Comp Technol Inst & Press Diophantus, Patras 26504, Greece
[3] Karlsruhe Inst Technol, Fasanengarten 5, D-76131 Karlsruhe, Germany
[4] Univ Patras, Dept Comp Engn & Informat, Patras 26500, Greece
关键词
Time-dependent shortest paths; FIFO property; Distance oracles; DISTANCE ORACLES; ALGORITHMS; COMPLEXITY; NETWORKS; ROUTE;
D O I
10.1007/s00453-021-00922-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Computing shortest paths in networks that exhibit a time-dependent metric is a core routine for many applications, with route planning in road networks being a prime example. In this work, we present an axiomatic approach which shows that for directed networks that satisfy certain properties we can provide time-dependent distance oracles that provably exhibit subquadratic preprocessing time and space (independent of the metric's amount of disconcavity), query time sublinear on the network size or the actual Dijkstra rank of the query at hand (measuring the distance ordering of the destination from the origin), and small stretch factor (approximation error).
引用
收藏
页码:815 / 870
页数:56
相关论文
共 32 条
[1]  
Agarwal R, 2013, PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), P526
[2]  
[Anonymous], PTV AG PLANUNG TRANS
[3]  
Bartal Y, 2011, PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P840
[4]  
Bast H, 2016, ALGORITHM ENG, V9230
[5]  
Batz G. V., 2013, ACM Journal of Experimental Algorithmics, V18, P1, DOI DOI 10.1145/2444016.2444020
[6]   SHORTEST ROUTE THROUGH A NETWORK WITH TIME-DEPENDENT INTERNODAL TRANSIT TIMES [J].
COOKE, KL ;
HALSEY, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 14 (03) :493-&
[7]   Algorithms for minimum-cost paths in time-dependent networks with waiting policies [J].
Dean, BC .
NETWORKS, 2004, 44 (01) :41-46
[8]  
DeanB, 2004, MIT TECHNICAL REPORT
[9]   Shortest Paths in Time-Dependent FIFO Networks [J].
Dehne, Frank ;
Omran, Masoud T. ;
Sack, Joerg-Ruediger .
ALGORITHMICA, 2012, 62 (1-2) :416-435
[10]   Time-Dependent SHARC-Routing [J].
Delling, Daniel .
ALGORITHMICA, 2011, 60 (01) :60-94