An Axiomatic Approach to Time-Dependent Shortest Path Oracles

被引:2
|
作者
Kontogiannis, Spyros [1 ,2 ]
Wagner, Dorothea [3 ]
Zaroliagis, Christos [2 ,4 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] Comp Technol Inst & Press Diophantus, Patras 26504, Greece
[3] Karlsruhe Inst Technol, Fasanengarten 5, D-76131 Karlsruhe, Germany
[4] Univ Patras, Dept Comp Engn & Informat, Patras 26500, Greece
关键词
Time-dependent shortest paths; FIFO property; Distance oracles; DISTANCE ORACLES; ALGORITHMS; COMPLEXITY; NETWORKS; ROUTE;
D O I
10.1007/s00453-021-00922-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Computing shortest paths in networks that exhibit a time-dependent metric is a core routine for many applications, with route planning in road networks being a prime example. In this work, we present an axiomatic approach which shows that for directed networks that satisfy certain properties we can provide time-dependent distance oracles that provably exhibit subquadratic preprocessing time and space (independent of the metric's amount of disconcavity), query time sublinear on the network size or the actual Dijkstra rank of the query at hand (measuring the distance ordering of the destination from the origin), and small stretch factor (approximation error).
引用
收藏
页码:815 / 870
页数:56
相关论文
共 50 条
  • [1] An Axiomatic Approach to Time-Dependent Shortest Path Oracles
    Spyros Kontogiannis
    Dorothea Wagner
    Christos Zaroliagis
    Algorithmica, 2022, 84 : 815 - 870
  • [2] Static and Time-Dependent Shortest Path through an Urban Environment Time-Dependent Shortest Path
    Alhoula, Wedad
    Hartley, Joanna
    2014 SCIENCE AND INFORMATION CONFERENCE (SAI), 2014, : 1027 - 1029
  • [3] Reversibility of the time-dependent shortest path problem
    Daganzo, CF
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2002, 36 (07) : 665 - 668
  • [4] The approach-dependent, time-dependent, label-constrained shortest path problem
    Sherali, Hanif D.
    Jeenanunta, Chawalit
    Hobeika, Antoine G.
    NETWORKS, 2006, 48 (02) : 57 - 67
  • [5] Variable Time Discretization for a Time-Dependent Shortest Path Algorithm
    Tian, Ye
    Chiu, Yi-Chang
    Gao, Yang
    2011 14TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2011, : 588 - 593
  • [6] The time-dependent shortest path and vehicle routing problem
    Jaballah, Rabie
    Veenstra, Marjolein
    Coelho, Leandro C.
    Renaud, Jacques
    INFOR, 2021, 59 (04) : 592 - 622
  • [7] The Shortest Path Problem on a Fuzzy Time-Dependent Network
    Huang, Wei
    Ding, Lixin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (11) : 3376 - 3385
  • [8] Algorithms for time-dependent bicriteria shortest path problems
    Hamacher, Horst W.
    Ruzika, Stefan
    Tjandra, Stevanus A.
    DISCRETE OPTIMIZATION, 2006, 3 (03) : 238 - 254
  • [9] SHORTEST-PATH DISTANCES - AN AXIOMATIC APPROACH
    SMITH, TE
    GEOGRAPHICAL ANALYSIS, 1989, 21 (01) : 1 - 31
  • [10] Time-Dependent Shortest Path Problems with Penalties and Limits on Waiting
    He, Edward
    Boland, Natashia
    Nemhauser, George
    Savelsbergh, Martin
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (03) : 997 - 1014