Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations

被引:3
作者
Capogna, L
Danielli, D
Garofalo, N
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish sharp capacitary estimates for Carnot-Caratheodory rings associated to a system of vector fields of Hormander type. Such estimates are instrumental to the study of the local behavior of singular solutions of a wide class of nonlinear subelliptic equations. One of the main results is a generalization of fundamental estimates obtained independently by Sanchez-Calle and Nagel, Stein and Wainger.
引用
收藏
页码:1153 / 1196
页数:44
相关论文
共 39 条
[21]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[23]   FOUNDATIONS FOR THE THEORY OF QUASI-CONFORMAL MAPPINGS ON THE HEISENBERG-GROUP [J].
KORANYI, A ;
REIMANN, HM .
ADVANCES IN MATHEMATICS, 1995, 111 (01) :1-87
[24]  
KORANYI A, 1987, B SCI MATH, V111, P3
[25]  
KORANYI A, 1988, LECT NOTES MATH, V1422, P59
[26]  
Littman W., 1963, ANN SCUOLA NORM SUP, V17, P43
[27]   THE DIFFERENTIAL OF A QUASI-CONFORMAL MAPPING OF A CARNOT-CARATHEODORY SPACE [J].
MARGULIS, GA ;
MOSTOW, GD .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :402-433
[28]  
Mostow G.D., 1973, Strong rigidity of locally symmetric spaces
[29]   BALLS AND METRICS DEFINED BY VECTOR-FIELDS .1. BASIC PROPERTIES [J].
NAGEL, A ;
STEIN, EM ;
WAINGER, S .
ACTA MATHEMATICA, 1985, 155 (1-2) :103-147