Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations

被引:3
作者
Capogna, L
Danielli, D
Garofalo, N
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish sharp capacitary estimates for Carnot-Caratheodory rings associated to a system of vector fields of Hormander type. Such estimates are instrumental to the study of the local behavior of singular solutions of a wide class of nonlinear subelliptic equations. One of the main results is a generalization of fundamental estimates obtained independently by Sanchez-Calle and Nagel, Stein and Wainger.
引用
收藏
页码:1153 / 1196
页数:44
相关论文
共 39 条
[1]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[2]   AN EMBEDDING THEOREM AND THE HARNACK INEQUALITY FOR NONLINEAR SUBELLIPTIC EQUATIONS [J].
CAPOGNA, L ;
DANIELLI, D ;
GAROFALO, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1765-1794
[3]  
CAPOGNA L., 1994, Comm. Anal. Geom, V2, P203
[4]  
CAPOGNA L, 1996, THESIS PURDUE U
[5]  
CAPOGNA L, 1993, REND SEM MAT U POLIT, V54, P361
[6]   HARNACK INEQUALITY FOR SUM OF SQUARES OF VECTOR-FIELDS PLUS A POTENTIAL [J].
CITTI, G ;
GAROFALO, N ;
LANCONELLI, E .
AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (03) :699-734
[7]  
Coifman RR., 1971, Lect. Notes Math., DOI 10.1007/BFb0058946
[8]   H-TYPE GROUPS AND IWASAWA DECOMPOSITIONS [J].
COWLING, M ;
DOOLEY, AH ;
KORANYI, A ;
RICCI, F .
ADVANCES IN MATHEMATICS, 1991, 87 (01) :1-41
[9]  
DANIELLI D, 1995, INDIANA U MATH J, V44, P269
[10]  
DANIELLI D, 1992, CR ACAD SCI I-MATH, V314, P987