Bounding the number of zeros of certain Abelian integrals

被引:79
作者
Manosas, F. [2 ]
Villadelprat, J. [1 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Anal, Barcelona, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
Abelian integral; Chebyshev system; Wronskian; Hamiltonian perturbation; Limit cycle; LIMIT-CYCLES; PERTURBATIONS; SYSTEMS; CENTERS;
D O I
10.1016/j.jde.2011.05.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a criterion that provides an easy sufficient condition in order for any nontrivial linear combination of n Abelian integrals to have at most n + k - 1 zeros counted with multiplicities. This condition involves the functions in the integrand of the Abelian integrals and it can be checked, in many cases, in a purely algebraic way. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1656 / 1669
页数:14
相关论文
共 23 条
[1]  
Arnold V., 2004, ARNOLDS PROBLEMS
[2]  
Binyamini G, 2010, INVENT MATH, V181, P227, DOI 10.1007/s00222-010-0244-0
[3]   Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops [J].
Dumortier, F ;
Li, CZ ;
Zhang, ZF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (01) :146-193
[4]   Abelian integrals and limit cycles [J].
Dumortier, Freddy ;
Roussarie, Robert .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (01) :116-165
[5]   Chebyshev property of complete elliptic integrals and its application to Abelian integrals [J].
Gasull, A ;
Li, WG ;
Llibre, J ;
Zhang, ZF .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 202 (02) :341-361
[6]   PERTURBATIONS OF QUADRATIC CENTERS OF GENUS ONE [J].
Gautier, Sebastien ;
Gavrilov, Lubomir ;
Iliev, Iliya D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (02) :511-535
[7]   Complete hyperelliptic integrals of the first kind and their non-oscillation [J].
Gavrilov, L ;
Iliev, ID .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (03) :1185-1207
[8]   Two-dimensional Fuchsian systems and the Chebyshev property [J].
Gavrilov, L ;
Iliev, ID .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 191 (01) :105-120
[9]   Bifurcations of limit cycles from infinity in quadratic systems [J].
Gavrilov, L ;
Iliev, ID .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (05) :1038-1064
[10]   The infinitesimal 16th Hilbert problem in the quadratic case [J].
Gavrilov, L .
INVENTIONES MATHEMATICAE, 2001, 143 (03) :449-497