Quantitative non-vanishing of central values of certain L-functions on GL(2) x GL(3)

被引:0
作者
Sugiyama, Shingo [1 ]
Tsuzuki, Masao [2 ]
机构
[1] Nihon Univ, Coll Sci & Technol, Dept Math, Chiyoda Ku, 1-8-14 Suruga Dai, Tokyo 1018308, Japan
[2] Sophia Univ, Dept Sci & Technol, Chiyoda Ku, Kioi Cho 7-1, Tokyo 1028554, Japan
关键词
Trace formulas; Central L-values; Non-vanishing; AUTOMORPHIC L-FUNCTIONS; TRACE FORMULA; EQUIDISTRIBUTION;
D O I
10.1007/s00209-021-02886-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be an even Hecke-Maass cusp form on SL2(Z) whose L-function does not vanish at the center of the functional equation. In this article, we obtain an exact formula of the average of triple products of phi, f and (f) over bar, where f runs over an orthonornial basis H-k of Hecke eigen elliptic cusp forms on SL2(Z) of a fixed weight k >= 4. As an application, we prove a quantitative non-vanishing results on the central values for the family of degree 6 L-functions L(s, phi x Ad f) with f in the union of H-k (K <= k < 2K) as K -> infinity.
引用
收藏
页码:1447 / 1479
页数:33
相关论文
共 43 条
[31]   Absolute values of L-functions for GL(n, R) at the point 1 [J].
Lau, Yuk-Kam ;
Wang, Yingnan .
ADVANCES IN MATHEMATICS, 2018, 335 :759-808
[32]   Critical values of Rankin-Selberg L-functions for GLn x GLn-1 and the symmetric cube L-functions for GL2 [J].
Raghuram, A. .
FORUM MATHEMATICUM, 2016, 28 (03) :457-489
[33]   NON-VANISHING OF DERIVATIVES OF L-FUNCTIONS ATTACHED TO HILBERT MODULAR FORMS [J].
Tanabe, Naomi .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (04) :1099-1105
[34]   Non-vanishing of L-functions of Hilbert modular forms at the critical point [J].
Trotabas, Denis .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (01) :187-259
[35]   p-Adic automorphic L-functions on GL(3) [J].
Geroldinger, Angelika .
RAMANUJAN JOURNAL, 2015, 38 (03) :641-682
[36]   NON-VANISHING OF CUBIC DIRICHLET L-FUNCTIONS OVER THE EISENSTEIN FIELD [J].
Guloglu, Ahmet m. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (05) :1947-1961
[37]   Central L-Values and Toric Periods for GL(2) [J].
Martin, Kimball ;
Whitehouse, David .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (01) :141-191
[38]   Weighted Distribution of Low-lying Zeros of GL(2) L-functions [J].
Knightly, Andrew ;
Reno, Caroline .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (01) :153-182
[39]   Results on the non-vanishing of derivatives of L-functions of vector-valued modular forms [J].
Lim, Subong ;
Raji, Wissam .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025, 68 (01) :63-79
[40]   Automorphic spectral identities and applications to automorphic L-functions on GL2 [J].
Letang, Delia .
JOURNAL OF NUMBER THEORY, 2013, 133 (01) :278-317