Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system

被引:36
|
作者
Chen, Q. [1 ]
Ja, M. Kum [1 ]
Li, Y. [2 ]
Chua, K. J. [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[2] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
基金
新加坡国家研究基金会;
关键词
Spray-assisted low-temperature desalination; Thermal vapor compression; Performance ratio; Exergy analysis; Economic analysis; MULTIPLE EFFECT DISTILLATION; LOW-GRADE HEAT; POWER; DRIVEN; COGENERATION; PERFORMANCE; PRESSURE; MODEL;
D O I
10.1016/j.energy.2018.10.154
中图分类号
O414.1 [热力学];
学科分类号
摘要
Integrating thermal desalination systems with vapor compression is an effective way to improve the energy efficiency. This paper investigates a spray-assisted low-temperature desalination system that is integrated with a thermal vapor compression system (SLID-TVC). A detailed thermodynamic model is judiciously developed based on the principles of heat and mass transfer, heat balance, mass balance, and exergy balance. Applying the model, the energy efficiency of the combined SLTD-TVC process is first evaluated. The production ratio of the combined system is found to be 10-35% higher than that of the conventional SLID process. Accordingly, an exergy analysis is conducted to quantify the sources of irreversibility within the system. The steam jet ejector is found to be the major source of thermodynamic irreversibility, accounting for more than 40% of the exergy destruction. The overall system efficiency is improved at a lower motive steam pressure, a higher number of operating stages and a medium cooling water flowrate. Finally an economic analysis is carried out, which reveals that the changes of both initial plant cost and operation cost are marginal after the integration of the thermal vapor compression system. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:871 / 885
页数:15
相关论文
共 50 条
  • [41] Experimental investigation of the vapor-compression cooling system in a data center: energy and exergy analysis
    Baghsheikhi, Mostafa
    Mohammadi, Majid
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (17) : 9079 - 9097
  • [42] Energy and exergy analysis of absorption-compression hybrid air-conditioning system
    Mohammadi, S. M. Hojjat
    Ameri, Mehran
    HVAC&R RESEARCH, 2013, 19 (06): : 744 - 753
  • [43] Energy, exergy, economic, and environmental analysis of an integrated system of high-temperature heat pump and gas separation unit
    Li, Xiaoqiong
    Zhang, Yufeng
    Fang, Lei
    Jin, Zhendong
    Zhang, Yan
    Yu, Xiaohui
    Ma, Xuelian
    Deng, Na
    Wu, Zhangxiang
    ENERGY CONVERSION AND MANAGEMENT, 2019, 198
  • [44] A comprehensive study of a green hybrid multi-generation compressed air energy storage (CAES) system for sustainable cities: Energy, exergy, economic, exergoeconomic, and advanced exergy analysis
    Bushehri, Mehdi Chahabi
    Zolfaghari, Seyed Mohammad
    Soltani, M.
    Nabat, Mohammad Hossein
    Nathwani, Jatin
    SUSTAINABLE CITIES AND SOCIETY, 2024, 101
  • [45] Energy, exergy and economic (3E) analysis of solar thermal energy assisted cascade Rankine cycle for reverse osmosis
    Raninga, Milan
    Mudgal, Anurag
    Patel, Vivek
    Patel, Jatin
    ENERGY, 2024, 293
  • [46] Energy and exergy analysis of vapor compression-triple effect absorption cascade refrigeration system
    Agarwal, Shyam
    Arora, Akhilesh
    Arora, B. B.
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (03): : 625 - 641
  • [47] Exergy and exergo-economic analysis of a hybrid renewable energy system under different climate conditions
    Kallio, Sonja
    Siroux, Monica
    RENEWABLE ENERGY, 2022, 194 : 396 - 414
  • [48] Experimental comparison of solar thermal desalination systems based on energy, exergy and economic (3-E) analysis
    Kumar, Amit
    Tiwari, Abhishek
    Mehla, Neeraj
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2023, 42 (02)
  • [49] Economic analysis of low-temperature radiant floor heating system
    Yu, HL
    Mao, QX
    Hu, ST
    ENERGY CONVERSION AND APPLICATION, VOL I AND II, 2001, : 989 - 992
  • [50] Techno-economic analysis of a novel hybrid heat pump system to recover waste heat and condensate from the low-temperature boiler exhaust gas
    Jamil, Shah Rukh
    Wang, Limin
    Che, Defu
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (05) : 3821 - 3838