Numerical insights on the spreading of practical 316 L stainless steel powder in SLM additive manufacturing

被引:39
|
作者
Yao, Dengzhi [1 ]
Liu, Xiaohan [1 ]
Wang, Ju [1 ]
Fan, Wei [1 ]
Li, Meng [1 ]
Fu, Haitao [1 ]
Zhang, Hao [1 ]
Yang, Xiaohong [1 ]
Zou, Qingchuan [1 ]
An, Xizhong [1 ]
机构
[1] Northeastern Univ, Sch Met, Key Lab Ecol Met Multimetall Mineral, Minist Educ, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive manufacturing; Selective laser melting; Powder spreading; DEM simulation; Structure characterization; Dynamics and mechanisms; DISCRETE ELEMENT SIMULATION; BED FUSION; FLOW; PACKING; STRESS;
D O I
10.1016/j.powtec.2021.05.082
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In powder bed additive manufacturing (3D printing), powder spreading plays a dominant role in determining not only the subsequent process but also the quality/performance of the printed part. Therefore, how to realize a superior powder bed with desired structure and property is of key significance and has been the main concern for researchers and engineers, which needs more in-depth insights and understanding. In this article, the spread-ing process of 316 L stainless steel powder with continuous size distribution in practical SLM 3D printing was nu-merically reproduced by discrete element method. The effects of processing parameters on the macro-and microscopic properties of the spread powder beds were systematically investigated. Corresponding dynamics and mechanisms were analyzed. The results show that through comprehensive analyses, the optimal blade ve -locity and gap height of 0.01 m/s and 3 D (D90) are preferred for the superior powder bed with high packing den-sity and good uniformity. The increasing particle flow instability and motion inertia caused by the high blade velocity as well as the serious wall effect and high jamming probability caused by the low gap height are the main reasons for the decline of the powder bed quality. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 50 条
  • [21] TENSILE/COMPRESSIVE RESPONSE OF 316L STAINLESS STEEL FABRICATED BY ADDITIVE MANUFACTURING
    Barrionuevo, German Omar
    La Fe-Perdomo, Ivan
    Caceres-Brito, Esteban
    Navas-Pinto, Wilson
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2024, (31): : 9 - 18
  • [22] Numerical simulation of the flow behavior and powder spreading mechanism in powder bed-based additive manufacturing
    Si, Liang
    Zhang, Tengfang
    Zhou, Mengyuan
    Li, Maoyuan
    Zhang, Yun
    Zhou, Huamin
    POWDER TECHNOLOGY, 2021, 394 : 1004 - 1016
  • [23] Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices
    Roettger, A.
    Boes, J.
    Theisen, W.
    Thiele, M.
    Esen, C.
    Edelmann, A.
    Hellmann, R.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (03): : 769 - 783
  • [24] Twinning behavior in deformation of SLM 316L stainless steel
    Yang, Dengcui
    Zhao, Yan
    Kan, Xinfeng
    Chu, Xiaohong
    Sun, Hang
    Zhao, Zhengzhi
    Sun, Jiquan
    Wang, Haibing
    MATERIALS RESEARCH EXPRESS, 2022, 9 (09)
  • [25] Microstructure and tensile property of SLM 316L stainless steel manufactured with fine and coarse powder mixtures
    Yang Xin
    Ren Yao-jia
    Liu Shi-feng
    Wang Qing-juan
    Shi Ming-jun
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2020, 27 (02) : 334 - 343
  • [26] Dynamic mechanical properties of 316L stainless steel fabricated by an additive manufacturing process
    Chen, Jie
    Wei, Haiyang
    Bao, Kuo
    Zhang, Xianfeng
    Cao, Yang
    Peng, Yong
    Kong, Jian
    Wang, Kehong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 11 (11): : 170 - 179
  • [27] Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing
    Pham, M. S.
    Dovgyy, B.
    Hooper, P. A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 704 : 102 - 111
  • [28] Graded lattice scaffolds in 316L stainless steel by additive manufacturing for tissue engineering
    Gatto, M. L.
    Mengucci, P.
    Santecchia, E.
    Cabibbo, M.
    Spigarelli, S.
    Groppo, R.
    METALLURGIA ITALIANA, 2023, (02): : 8 - 13
  • [29] Temperature effect of irradiation hardening behavior of 316L stainless steel by additive manufacturing
    Fu C.
    Li J.
    Bai J.
    Lin J.
    He Jishu/Nuclear Techniques, 2022, 45 (09):
  • [30] Damage behavior of additive manufacturing 316L stainless steel irradiated with Fe ions
    Yang, Jinlei
    Fu, Chonglong
    Li, Jianjian
    Bai, Juju
    Lei, Qiantao
    Lin, Jun
    NUCLEAR MATERIALS AND ENERGY, 2024, 39