Improved inequalities related to the A-numerical radius for commutators of operators

被引:1
作者
Feki, Kais [1 ,2 ]
机构
[1] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia, Tunisia
[2] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat, LR 13 ES-22, Sfax, Tunisia
关键词
Positive operator; semiinner product; numerical radius; commutator; anticommutator;
D O I
10.3906/mat-2110-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a positive bounded linear operator on a complex Hilbert space H and B-A(H) be the subspace of all operators which admit A-adjoints operators. In this paper, we establish some inequalities involving the commutator and the anticommutator of operators in semi-Hilbert spaces, i.e. spaces generated by positive semidefinite sesquilinear forms. Mainly, among other inequalities, we prove that for T, S is an element of B-A(H) we have omega(A)(TS +/- ST) <= 2 root 2 min {f(A)(T, S), f(A)(S, T)}, where f(A)(X, Y) = parallel to Y parallel to(A) root omega(2)(A) (X) - vertical bar parallel to X+X-#A/2 parallel to(2)(A) - parallel to X-X-#A/2i parallel to(2)(A)vertical bar/2. This covers and improves the well-known inequalities of Fong and Holbrook. Here omega(A)(.) and parallel to.parallel to(A) are the A-numerical radius and the A-operator seminorm of semi-Hilbert space operators, respectively and X-#A denotes a distinguished A-adjoint operator of X.
引用
收藏
页码:311 / 322
页数:12
相关论文
共 26 条
[1]  
Abu-Omar A, 2015, HOUSTON J MATH, V41, P1163
[2]   Metric properties of projections in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :11-28
[3]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[4]  
Baklouti H, 2020, LINEAR MULTILINEAR A, V68, P845, DOI 10.1080/03081087.2019.1593925
[5]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[6]   Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (03)
[7]   New upper bounds for the numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
[8]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[9]  
Bhunia P, 2021, B IRAN MATH SOC, V47, P435, DOI 10.1007/s41980-020-00392-8
[10]   Refinements of A-numerical radius inequalities and their applications [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1498-1511