Study of multiplicity and uniqueness of solutions for a class of nonhomogeneous sublinear elliptic equations

被引:10
作者
Benrhouma, Mohamed [1 ]
机构
[1] Sci Fac Monastir, Dept Math, Monastir 5019, Tunisia
关键词
Semilinear elliptic equation; Concentration-compactness principle; Variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; POSITIVE SOLUTIONS; R-N; EXISTENCE; PERTURBATION; CALCULUS; DOMAINS; R(N);
D O I
10.1016/j.na.2010.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the sublinear elliptic equation: -Delta u + V(x)u + a(x)vertical bar u vertical bar(p) sgn(u) = f on R(N), N > 2, 0 < p < 1. Under suitable assumptions on the terms V and a, we prove some existence, uniqueness and multiplicity results. Continuity of solutions in the perturbation parameter f at 0 is also studied. Our main tools are the concentration-compactness principle and mountain-pass theorem. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2682 / 2694
页数:13
相关论文
共 50 条