SOME GENERAL HURWITZ-LERCH TYPE ZETA FUNCTIONS ASSOCIATED WITH THE SRIVASTAVA-DAOUST MULTIPLE HYPERGEOMETRIC FUNCTIONS

被引:6
作者
Srivastava, H. M. [1 ,2 ,3 ,4 ]
Chandel, R. C. Singh [5 ]
Kumar, H. [6 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] DV Postgrad Coll, Dept Math, Orai 285001, Uttar Pradesh, India
[6] DAV Postgrad Coll, Dept Math, Kanpur 208001, Uttar Pradesh, India
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2022年 / 6卷 / 04期
关键词
Dirichlet-type series; Hurwitz-Lerch type zeta functions; Kamp ' e de F ' eriet functions; Riemann zeta function; Srivastava-Daoust series; FAMILIES; CONVERGENCE; EXPANSIONS;
D O I
10.23952/jnva.6.2022.4.01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and investigate various properties and relations involving some general families of double and multiple Hurwitz-Lerch type zeta functions which are associated with the Srivastava-Daoust class of hypergeometric functions in two and more variables. Relevant connections with other (known or new) results for functions of the analytic number theory are also considered.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 43 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V9th, DOI DOI 10.2307/2282672
[2]  
Adamchik V.S., 1998, Analysis (Munich), V18, P131
[3]  
[Anonymous], 2019, J. Adv. Engrg. Comput.
[4]  
[Anonymous], 1984, A treatise on generating functions
[5]  
Apostol T, 1976, INTRO ANAL NUMBER TH
[6]   A generalization of the Hurwitz-Lerch Zeta function [J].
Choi, Junesang ;
Jang, Douk Soo ;
Srivastava, H. M. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (01) :65-79
[7]   Note on the Hurwitz-Lerch Zeta Function of Two Variables [J].
Choi, Junesang ;
Sahin, Recep ;
Yagci, Oguz ;
Kim, Dojin .
SYMMETRY-BASEL, 2020, 12 (09)
[8]   An Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables [J].
Choi, Junesang ;
Parmar, Rakesh K. .
FILOMAT, 2017, 31 (01) :91-96
[9]  
Daman O.A., 2012, MATH SCI RES J, V16, P251
[10]  
Erdelyi A., 1953, Higher Transcendental Functions