Electrocatalytic Hydrogen Production by [Ni(7PPh2NH)2]2+: Removing the Distinction Between Endo- and Exo-Protonation Sites

被引:23
作者
Brown, Houston J. S. [1 ]
Wiese, Stefan [1 ]
Roberts, John A. S. [1 ]
Bullock, R. Morris [1 ]
Helm, Monte L. [1 ]
机构
[1] Pacific NW Natl Lab, Ctr Mol Elect, Div Phys Sci, Richland, WA 99352 USA
关键词
hydrogen production; electrocatalysis; proton relays; pendant amines; nickel complexes; nickel phosphine complexes; SPECTROPHOTOMETRIC BASICITY SCALE; MOLECULAR ELECTROCATALYSTS; ACTIVE-SITE; COMPLEXES; OXIDATION; H-2; ACETONITRILE; MOBILITY; ANALOGS; AMINES;
D O I
10.1021/cs502132y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new Ni(II) complex, [N-i(7P(2)(Ph)N(H))(2)H](3+) (7P(2)(Ph)N(HH) = 3,6-diphenyl-1-aza-3,6-diphosphacycloheptane), has been synthesized, and its electrochemical properties have been reported. The 7P(2)(Ph)N(HH) ligand features an NH, ensuring properly positioned protonated amine groups (NH+) for electrocatalysis, regardless of whether protonation occurs exo or endo to the metal center. The compound is an electrocatalyst for H-2 production in the presence of organic acids (pK(a) range 1013 in CH3CN), with turnover frequencies ranging from 160 to 780 s(1) at overpotentials between 320 and 470 mV, as measured at the potential of the catalytic wave. In stark contrast to [Ni((P2N2R')-N-Ph)(2)](2+) ((P2N2R')-N-Ph = 3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) and other [Ni(7P(2)(Ph)N(R'))(2)](2+) complexes, catalytic turnover frequencies for H-2 production by [Ni(7P(2)(Ph)N(H))(2)](2+) do not show catalytic rate enhancement upon the addition of H2O. This finding supports the assertion that [Ni(7P(2)(Ph)N(H'))(2)](2+) eliminates the distinction between the endo- and exo-protonation isomers.
引用
收藏
页码:2116 / 2123
页数:8
相关论文
共 38 条
[1]   Determining the Overpotential for a Molecular Electrocatalyst [J].
Appel, Aaron M. ;
Helm, Monte L. .
ACS CATALYSIS, 2014, 4 (02) :630-633
[2]   Production of hydrogen by electrocatalysis: making the H-H bond by combining protons and hydrides [J].
Bullock, R. Morris ;
Appel, Aaron M. ;
Helm, Monte L. .
CHEMICAL COMMUNICATIONS, 2014, 50 (24) :3125-3143
[3]   Abundant Metals Give Precious Hydrogenation Performance [J].
Bullock, R. Morris .
SCIENCE, 2013, 342 (6162) :1054-1055
[4]   Synthetic Models for the Active Site of the [FeFe]-Hydrogenase: Catalytic Proton Reduction and the Structure of the Doubly Protonated Intermediate [J].
Carroll, Maria E. ;
Barton, Bryan E. ;
Rauchfuss, Thomas B. ;
Carroll, Patrick J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (45) :18843-18852
[5]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[6]   Conformational Mobility and Pendent Base Effects on Electrochemistry of Synthetic Analogues of the [FeFe]-Hydrogenase Active Site [J].
Crouthers, Danielle J. ;
Denny, Jason A. ;
Bethel, Ryan D. ;
Munoz, David G. ;
Darensbourg, Marcetta Y. .
ORGANOMETALLICS, 2014, 33 (18) :4747-4755
[7]   Iron Complexes for the Electrocatalytic Oxidation of Hydrogen: Tuning Primary and Secondary Coordination Spheres [J].
Darmon, Jonathan M. ;
Raugei, Simone ;
Liu, Tianbiao ;
Hulley, Elliott B. ;
Weiss, Charles J. ;
Bullock, R. Morris ;
Helm, Monte L. .
ACS CATALYSIS, 2014, 4 (04) :1246-1260
[8]   Development of Molecular Electrocatalysts for Energy Storage [J].
DuBois, Daniel L. .
INORGANIC CHEMISTRY, 2014, 53 (08) :3935-3960
[9]   Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases [J].
Fontecilla-Camps, Juan C. ;
Volbeda, Anne ;
Cavazza, Christine ;
Nicolet, Yvain .
CHEMICAL REVIEWS, 2007, 107 (10) :4273-4303
[10]  
Frey M, 2002, CHEMBIOCHEM, V3, P153, DOI 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO