Local well-posedness for a Lotka-Volterra system in Besov spaces

被引:8
作者
Viana, Arlucio [1 ]
机构
[1] Univ Fed Sergipe, Dept Math, Itabaiana, Sergipe, Brazil
关键词
Lotka-Volterra system; Besov spaces; Partial integrodifferential equations; Interpolation theory; TRAVELING WAVE SOLUTIONS; ACTIVE SCALAR EQUATIONS; SELF-SIMILAR SOLUTIONS; MORREY SPACES; INITIAL DATA; ASYMPTOTIC-BEHAVIOR; EXISTENCE;
D O I
10.1016/j.camwa.2015.02.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study local existence, uniqueness, and continuous dependence upon the initial data of mild solutions for a diffusive non-autonomous Lotka-Volterra system. Initial data are taken in the Besov space B-p,q,N(sigma). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:667 / 674
页数:8
相关论文
共 50 条
[41]   Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space [J].
Luo, Wei ;
Yin, Zhaoyang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 122 :1-22
[42]   Liouvillian integration of the Lotka-Volterra system [J].
Ollagnier J.M. .
Qualitative Theory of Dynamical Systems, 2001, 2 (2) :307-358
[43]   Global well-posedness and asymptotic behavior for Navier-Stokes-Coriolis equations in homogeneous Besov spaces [J].
Ferreira, Lucas C. F. ;
Angulo-Castillo, Vladimir .
ASYMPTOTIC ANALYSIS, 2019, 112 (1-2) :37-58
[44]   Well-Posedness of Mild Solutions for the Fractional Navier-Stokes Equations in Besov Spaces [J].
Xi, Xuan-Xuan ;
Zhou, Yong ;
Hou, Mimi .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
[45]   Composition estimates and well-posedness for Hardy-Henon parabolic equations in Besov spaces [J].
Chikami, Noboru .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2019, 5 (02) :215-250
[46]   The well-posedness of the surface quasi-geostrophic equations in the Besov-Morrey spaces [J].
Xu, Jiang ;
Tan, Yanfei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 92 :60-71
[47]   Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces [J].
Yuan, Baoquan ;
Yuan, Jia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (11) :4405-4422
[48]   Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces [J].
Wu, Gang ;
Yuan, Ha .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) :1326-1335
[49]   Local well-posedness in critical spaces for the compressible MHD equations [J].
Bian, Dongfen ;
Yuan, Baoquan .
APPLICABLE ANALYSIS, 2016, 95 (02) :239-269
[50]   Blow-up phenomena and the local well-posedness and ill-posedness of the generalized Camassa-Holm equation in critical Besov spaces [J].
Meng, Zhiying ;
Yin, Zhaoyang .
MONATSHEFTE FUR MATHEMATIK, 2023, 200 (04) :933-954