Local well-posedness for a Lotka-Volterra system in Besov spaces

被引:8
作者
Viana, Arlucio [1 ]
机构
[1] Univ Fed Sergipe, Dept Math, Itabaiana, Sergipe, Brazil
关键词
Lotka-Volterra system; Besov spaces; Partial integrodifferential equations; Interpolation theory; TRAVELING WAVE SOLUTIONS; ACTIVE SCALAR EQUATIONS; SELF-SIMILAR SOLUTIONS; MORREY SPACES; INITIAL DATA; ASYMPTOTIC-BEHAVIOR; EXISTENCE;
D O I
10.1016/j.camwa.2015.02.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study local existence, uniqueness, and continuous dependence upon the initial data of mild solutions for a diffusive non-autonomous Lotka-Volterra system. Initial data are taken in the Besov space B-p,q,N(sigma). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:667 / 674
页数:8
相关论文
共 50 条
[21]   Global well-posedness of the critical Burgers equation in critical Besov spaces [J].
Miao, Changxing ;
Wu, Gang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (06) :1673-1693
[22]   Well-posedness of the modified Camassa-Holm equation in Besov spaces [J].
Tang, Hao ;
Liu, Zhengrong .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1559-1580
[23]   On the well-posedness of the ideal incompressible viscoelastic flow in the critical Besov spaces [J].
Qiu, Hua ;
Yao, Zheng-an .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) :257-275
[24]   Well-posedness for the Cauchy problem of the modified Hunter-Saxton equation in the Besov spaces [J].
Mi, Yongsheng ;
Mu, Chunlai .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) :4061-4074
[25]   Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces [J].
Zhao, Jihong ;
Deng, Chao ;
Cui, Shangbin .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
[26]   A note on Lotka-Volterra system [J].
Florica, A ;
Ioana, P ;
Maria, M .
Bulletin of the University of Agricultural Sciences and Veterinary Medicine, Vol 57: HORTICULTURE, 2002, 57 :266-269
[27]   Well-Posedness of Mild Solutions for the Fractional Navier–Stokes Equations in Besov Spaces [J].
Xuan-Xuan Xi ;
Yong Zhou ;
Mimi Hou .
Qualitative Theory of Dynamical Systems, 2024, 23
[28]   Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces [J].
Li, Jinlu ;
Yin, Zhaoyang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) :6125-6143
[29]   WELL-POSEDNESS AND BLOWUP CRITERION OF GENERALIZED POROUS MEDIUM EQUATION IN BESOV SPACES [J].
Zhou, Xuhuan ;
Xiao, Weiliang ;
Zheng, Taotao .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
[30]   Besov spaces and unconditional well-posedness for the nonlinear Schrodinger equation in Hs (Rn) [J].
Furioli, G ;
Terraneo, E .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (03) :349-367