Local well-posedness for a Lotka-Volterra system in Besov spaces

被引:8
|
作者
Viana, Arlucio [1 ]
机构
[1] Univ Fed Sergipe, Dept Math, Itabaiana, Sergipe, Brazil
关键词
Lotka-Volterra system; Besov spaces; Partial integrodifferential equations; Interpolation theory; TRAVELING WAVE SOLUTIONS; ACTIVE SCALAR EQUATIONS; SELF-SIMILAR SOLUTIONS; MORREY SPACES; INITIAL DATA; ASYMPTOTIC-BEHAVIOR; EXISTENCE;
D O I
10.1016/j.camwa.2015.02.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study local existence, uniqueness, and continuous dependence upon the initial data of mild solutions for a diffusive non-autonomous Lotka-Volterra system. Initial data are taken in the Besov space B-p,q,N(sigma). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:667 / 674
页数:8
相关论文
共 50 条
  • [1] Well-posedness of a ratio-dependent Lotka-Volterra system with feedback control
    Wang, Changyou
    Zhou, Yuqian
    Li, Yonghong
    Li, Rui
    BOUNDARY VALUE PROBLEMS, 2018,
  • [2] Global well-posedness of advective Lotka-Volterra competition systems with nonlinear diffusion
    Wang, Qi
    Yang, Jingyue
    Yu, Feng
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (05) : 2322 - 2348
  • [3] On the well-posedness of the Cauchy problem for an MHD system in Besov spaces
    Miao, Changxing
    Yuan, Baoquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (01) : 53 - 76
  • [4] WELL-POSEDNESS OF THE IDEAL MHD SYSTEM IN CRITICAL BESOV SPACES
    Miao, Changxing
    Yuan, Baoquan
    METHODS AND APPLICATIONS OF ANALYSIS, 2006, 13 (01) : 89 - 106
  • [5] Local Well-Posedness of a Two-Component Novikov System in Critical Besov Spaces
    Guo, Min
    Wang, Fang
    Yu, Shengqi
    MATHEMATICS, 2022, 10 (07)
  • [6] Local well-posedness for the incompressible Euler equations in the critical Besov spaces
    Zhou, Y
    ANNALES DE L INSTITUT FOURIER, 2004, 54 (03) : 773 - +
  • [7] Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces
    Cloos, Cai Constantin
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (01) : 207 - 244
  • [8] Well-posedness of a ratio-dependent Lotka–Volterra system with feedback control
    Changyou Wang
    Yuqian Zhou
    Yonghong Li
    Rui Li
    Boundary Value Problems, 2018
  • [9] Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces
    Nie, Yao
    Yuan, Jia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [10] Well-Posedness for the Three Dimension Magnetohydrodynamic System in the Anisotropic Besov Spaces
    Xiaoping Zhai
    Yongsheng Li
    Wei Yan
    Acta Applicandae Mathematicae, 2016, 143 : 1 - 13