共 50 条
Staggered larval time-to-hatch and insecticide resistance in the major malaria vector Anopheles gambiae S form
被引:12
作者:
Kaiser, Maria L.
[1
,2
]
Koekemoer, Lizette L.
[1
,2
]
Coetzee, Maureen
[1
,2
]
Hunt, Richard H.
[2
,3
]
Brooke, Basil D.
[1
,2
]
机构:
[1] Univ Witwatersrand, Sch Pathol, Fac Hlth Sci, Malaria Entomol Res Unit, Johannesburg, South Africa
[2] Natl Hlth Lab Serv, Natl Inst Communicable Dis, Vector Control Reference Unit, ZA-2131 Johannesburg, South Africa
[3] Univ Witwatersrand, Sch Anim Plant & Environm Sci, Johannesburg, South Africa
来源:
基金:
新加坡国家研究基金会;
关键词:
WEST-AFRICA;
CHROMOSOMAL FORMS;
BURKINA-FASO;
MUTATION;
SUSCEPTIBILITY;
IDENTIFICATION;
COMPLEX;
BENIN;
AREA;
D O I:
10.1186/1475-2875-9-360
中图分类号:
R51 [传染病];
学科分类号:
100401 ;
摘要:
Background: Anopheles gambiae is a major vector of malaria in the West African region. Resistance to multiple insecticides has been recorded in An. gambiae S form in the Ahafo region of Ghana. A laboratory population (GAH) established using wild material from this locality has enabled a mechanistic characterization of each resistance phenotype as well as an analysis of another adaptive characteristic staggered larval time-to-hatch. Methods: Individual egg batches obtained from wild caught females collected from Ghana and the Republic of the Congo were monitored for staggered larval time-to-hatch. In addition, early and late larval time-to-hatch sub-colonies were selected from GAH. These selected sub-colonies were cross-mated and their hybrid progeny were subsequently intercrossed and back-crossed to the parental strains. The insecticide susceptibilities of the GAH base colony and the time-to-hatch selected sub-colonies were quantified for four insecticide classes using insecticide bioassays. Resistance phenotypes were mechanistically characterized using insecticide-synergist bioassays and diagnostic molecular assays for known reduced target-site sensitivity mutations. Results: Anopheles gambiae GAH showed varying levels of resistance to all insecticide classes. Metabolic detoxification and reduced target-site sensitivity mechanisms were implicated. Most wild-caught families showed staggered larval time-to-hatch. However, some families were either exclusively early hatching or late hatching. Most GAH larvae hatched early but many egg batches contained a proportion of late hatching larvae. Crosses between the time-to-hatch selected sub-colonies yielded ambiguous results that did not fit any hypothetical models based on single-locus Mendelian inheritance. There was significant variation in the expression of insecticide resistance between the time-to-hatch phenotypes. Conclusions: An adaptive response to the presence of multiple insecticide classes necessarily involves the development of multiple resistance mechanisms whose effectiveness may be enhanced by intra-population variation in the expression of resistance phenotypes. The variation in the expression of insecticide resistance in association with selection for larval time-to-hatch may induce this kind of enhanced adaptive plasticity as a consequence of pleiotropy, whereby mosquitoes are able to complete their aquatic life stages in a variable breeding environment using staggered larval time-to-hatch, giving rise to an adult population with enhanced variation in the expression of insecticide resistance.
引用
收藏
页数:13
相关论文
共 50 条