Liquid Heat Capacity Measurements of the Linear Dicarboxylic Acid Family via Modulated Differential Scanning Calorimetry

被引:5
作者
Bloxham, Joseph C. [1 ]
Hill, Daniel [1 ]
Knotts, Thomas A. [1 ]
Giles, Neil F. [1 ]
Wilding, W. Vincent [1 ]
机构
[1] Brigham Young Univ, Provo, UT 84602 USA
关键词
Calorimeters - Specific heat - Differential scanning calorimetry - Forecasting - Liquids - Carbon;
D O I
10.1021/acs.jced.9b00789
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper reports liquid heat capacity data on members of the linear saturated dicarboxylic acid family and one dicarboxylic acid derivative measured using modulated differential scanning calorimetry. The dicarboxylic acids range in carbon number from 4 to 14. The compounds studied are dimethyl oxalate (CAS RN 553-90-2), adipic acid (1,6-hexanedioic acid, CAS RN 124-04-9), pimelic acid (1,7-heptanedioic acid, CAS RN 111-16-0), suberic acid (1,8-octanedioic acid, CAS RN 505-48-6), azelaic acid (1,9-nonanedioic acid, CAS RN 123-99-9), sebacic acid (1,10-decanedioic acid, CAS RN 111-20-6), dodecanedioic acid (1,12-dodecanedioc acid, CAS RN 693-23-2), and tetradecanedioic acid (1,14-tetradecandioic acid, CAS RN 821-38-5). The experimental results show a consistent family trend and are compared to prediction methods and data from other chemical families. A discussion of the differences in liquid heat capacity between carboxylic acids, n-alkanes, and dicarboxylic acids is presented, the accuracy of prediction through thermodynamic equations is analyzed for the family, and a correction factor for the Ruzicka-Domalski prediction method (Ruzicka, V. R, Jr.; Domalski, E. S. Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature using Group Additivity. II. Compounds of Carbon, Hydrogen, Halogens, Nitrogen, Oxygen, and Sulfur. J. Phys. Chem. Ref. Data 1993, 22, 619-657.) for dicarboxylic acids is given.
引用
收藏
页码:591 / 597
页数:7
相关论文
共 12 条
[1]  
Babinkov A., 1979, Termodinanamika organicheskikh soedinenli, V8, P28
[2]   Heat capacity of alkanolamine aqueous solutions [J].
Chiu, LF ;
Li, MH .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1999, 44 (06) :1396-1401
[3]   Chain Length Dependence of the Thermodynamic Properties of n-Alkanes and their Monosubstituted Derivatives [J].
Costa, Jose C. S. ;
Mendes, Adelio ;
Santos, Luis M. N. B. F. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2018, 63 (01) :1-20
[4]  
Frisch M.J., 2016, Gaussian 16 Rev. B.01
[5]   Heat capacity of dowanols within a temperature range of (275.15-339.15) K. Measurements and prediction [J].
Goralski, Pawel ;
Tkaczyk, Mariola ;
Ludzik, Katarzyna .
FLUID PHASE EQUILIBRIA, 2016, 430 :13-18
[6]   Melting Point, Enthalpy of Fusion, and Heat Capacity Measurements of Several Polyfunctional, Industrially Important Compounds by Differential Scanning Calorimetry [J].
Hogge, Joseph W. ;
Long, Emily A. ;
Christian, Michael L. ;
Fankhauser, Andrew D. ;
Quist, Nicole L. ;
Rice, Deborah M. ;
Wilding, Wade V. ;
Knotts, Thomas A. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2018, 63 (07) :2500-2511
[7]   New Vapor-Pressure Prediction with Improved Thermodynamic Consistency using the Riedel Equation [J].
Hogge, Joseph W. ;
Giles, Neil F. ;
Rowley, Richard L. ;
Knotts, Thomas A. ;
Wilding, W. Vincent .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (49) :14678-14685
[8]  
Joint Committee for Guides in Metrology, 2008, EV MEAS DAT GUID EXP, V100
[9]  
Morgan P.:., 1978, Encyclopedia of Chemical Technology, V7, P614
[10]   Critical temperatures and pressures of straight-chain saturated dicarboxylic acids (C4 to C14) [J].
Nikitin, ED ;
Popov, AP ;
Bogatishcheva, NS ;
Yatluk, YG .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2004, 49 (06) :1515-1520