Influence of Large-scale Field Structures on the Scaling Anisotropy in 3D MHD Turbulence

被引:5
作者
Yang, Liping [1 ,2 ]
Tu, Chuanyi [2 ]
He, Jiansen [2 ]
Wu, Honghong [2 ]
Wang, Xin [2 ,3 ]
Feng, Xueshang [1 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, SIGMA Weather Grp, Beijing 100190, Peoples R China
[2] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[3] Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SOLAR-WIND; DISCONTINUITIES; INTERMITTENCY; HELIOSPHERE; WAVES;
D O I
10.3847/1538-4357/ac1790
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Magnetohydrodynamic (MHD) turbulence is revealed to have scaling anisotropy based on structure function calculations. Recent studies on solar wind turbulence found that the scaling anisotropy disappears when removing large-scale field structures. This finding raises questions as to whether numerical MHD turbulences have large-scale field structures. How do these structures affect the scaling anisotropy therein? Here we investigate these questions with a driven compressible three-dimensional MHD turbulence. We introduce a new method to check how the random stationarity condition is satisfied. We find for the first time in the numerical MHD turbulence that the large-scale field structures destroy the random stationarity of the local fields and make samplings nonparallel to the instantaneous fields be calculated as apparent parallel samplings. This mixture makes statistical calculations show anisotropic scaling of the turbulence. When we select only the random stationary data intervals, the statistical results show an isotropic nature. We also find that among the large-scale field structures, one-third are tangential discontinuities (TDs), one-third are rotational discontinuities (RDs), and the rest are EDs (either TD or RD). These results show that the large-scale structures in the numerical MHD turbulence have important influence on the structure function analysis.
引用
收藏
页数:8
相关论文
共 52 条
[1]   COMPARISON OF SPECTRAL SLOPES OF MAGNETOHYDRODYNAMIC AND HYDRODYNAMIC TURBULENCE AND MEASUREMENTS OF ALIGNMENT EFFECTS [J].
Beresnyak, A. ;
Lazarian, A. .
ASTROPHYSICAL JOURNAL, 2009, 702 (02) :1190-1198
[2]  
Biskamp D., 2003, Magnetohydrodynamic Turbulence, DOI DOI 10.1017/CBO9780511535222
[3]   Spectrum of magnetohydrodynamic turbulence [J].
Boldyrev, S .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[4]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+
[5]   Statistical Analysis of Field-Aligned Alfvenic Turbulence and Intermittency in Fast Solar Wind [J].
Carbone, Francesco ;
Telloni, Daniele ;
Sorriso-Valvo, Luca ;
Zank, Gary ;
Zhao, Lingling ;
Adhikari, Laxman ;
Bruno, Roberto .
UNIVERSE, 2020, 6 (08)
[6]   Anisotropy of Alfvenic turbulence in the solar wind and numerical simulations [J].
Chen, C. H. K. ;
Mallet, A. ;
Yousef, T. A. ;
Schekochihin, A. A. ;
Horbury, T. S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (04) :3219-3226
[7]   Anisotropy of Solar Wind Turbulence between Ion and Electron Scales [J].
Chen, C. H. K. ;
Horbury, T. S. ;
Schekochihin, A. A. ;
Wicks, R. T. ;
Alexandrova, O. ;
Mitchell, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[8]   A detailed examination of anisotropy and timescales in three-dimensional incompressible magnetohydrodynamic turbulence [J].
Chhiber, Rohit ;
Matthaeus, William H. ;
Oughton, Sean ;
Parashar, Tulasi N. .
PHYSICS OF PLASMAS, 2020, 27 (06)
[10]   The anisotropy of magnetohydrodynamic Alfvenic turbulence [J].
Cho, JY ;
Vishniac, ET .
ASTROPHYSICAL JOURNAL, 2000, 539 (01) :273-282