Mining co-location patterns from distributed spatial data

被引:7
|
作者
Maiti, Sandipan [1 ]
Subramanyam, R. B. V. [1 ]
机构
[1] NIT Warangal, Dept Comp Sci & Engn, Warangal, India
关键词
Spatial data; Co-location pattern; Map-Reduce computing; Neighbour relation; Decision system;
D O I
10.1016/j.jksuci.2018.08.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Co-location patterns in spatial dataset are the interesting collection of dissimilar objects which are located in proximity. We keep similar objects in an entity set and maintain that no two objects in a co-location pattern belong to an entity set. Location proximity is based on Euclidean distance measure. However, algorithms for mining patterns in transactional datasets are not directly applicable to spatial datasets for mining co-location patterns. Conventional methods are not applicable to distributed tempo-ral data and many applications generating spatial dataset are inherently distributive in nature. In this paper, a Map-Reduce based approach is proposed to find all co-location patterns from a spatial dataset distributed over nodes. This approach is modularized one and consists of four algorithms. With the first three algorithms in the first approach and by proposing an algorithm for dynamic datasets, this paper contains another approach for the co-location patterns set, that also updates in an incremental manner (not from scratch) whenever certain changes occur in the dataset. Experimental results on larger datasets are also presented. (c) 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1064 / 1073
页数:10
相关论文
共 50 条
  • [1] MINING CO-LOCATION PATTERNS FROM SPATIAL DATA
    Zhou, C.
    Xiao, W. D.
    Tang, D. Q.
    XXIII ISPRS CONGRESS, COMMISSION II, 2016, 3 (02): : 85 - 90
  • [2] Mining spatial dynamic co-location patterns
    Duan, Jiangli
    Wang, Lizhen
    Hu, Xin
    Chen, Hongmei
    FILOMAT, 2018, 32 (05) : 1491 - 1497
  • [3] A New Data Mining Approach to Find Co-location Pattern from Spatial Data
    Venkatesan, M.
    Thangavelu, Arunkumar
    Prabhavathy, P.
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, 2011, 198 : 536 - +
  • [4] Mining Spatial Co-Location Patterns With a Mixed Prevalence Measure
    Yang, Peizhong
    Wang, Lizhen
    Zhou, Lihua
    Chen, Hongmei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 7845 - 7859
  • [5] Maximal Instance Algorithm for Fast Mining of Spatial Co-Location Patterns
    Zhou, Guoqing
    Li, Qi
    Deng, Guangming
    REMOTE SENSING, 2021, 13 (05) : 1 - 20
  • [6] An Effective Approach on Mining Co-location Patterns from Spatial Databases with Rare Features
    Yang, Peizhong
    Wang, Lizhen
    Wang, Xiaoxuan
    Fang, Dianwu
    2019 20TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2019), 2019, : 53 - 62
  • [7] Mining Co-location Patterns with Dominant Features
    Fang, Yuan
    Wang, Lizhen
    Wang, Xiaoxuan
    Zhou, Lihua
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2017, PT I, 2017, 10569 : 183 - 198
  • [9] A FAST APPROACH FOR SPATIAL CO-LOCATION PATTERN MINING
    He, Fei
    Deng, Xuemin
    Fang, Jinyun
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3654 - 3657
  • [10] Mining Statistically Significant Co-location and Segregation Patterns
    Barua, Sajib
    Sander, Joerg
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (05) : 1185 - 1199