We study Ulrich bundles and their moduli on unnodal Enriques surfaces. In particular, we prove that unnodal Enriques surfaces are of Ulrich wild representation type with respect to (an arbitrary multiple of) a Fano polarization by constructing moduli spaces of stable Ulrich bundles of arbitrary rank and arbitrarily large dimension.
机构:
Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei Street, Bucharest
Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, BucharestFaculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei Street, Bucharest
Aprodu M.
Kim Y.
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Institut für Mathematik, Vivatsgasse 7, BonnFaculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei Street, Bucharest
机构:
Univ Bucuresti, Fac Matemat & Informat, Str Acad 14, Bucharest 010014, Romania
Acad Romane, Inst Matemat Simion Stoilow, Calea Grivitei 21,Sect 1, Bucharest 010702, RomaniaUniv Bucuresti, Fac Matemat & Informat, Str Acad 14, Bucharest 010014, Romania
Aprodu, Marian
Costa, Laura
论文数: 0引用数: 0
h-index: 0
机构:
Fac Matemat & Informat, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, SpainUniv Bucuresti, Fac Matemat & Informat, Str Acad 14, Bucharest 010014, Romania
Costa, Laura
Maria Miro-Roig, Rosa
论文数: 0引用数: 0
h-index: 0
机构:
Fac Matemat & Informat, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, SpainUniv Bucuresti, Fac Matemat & Informat, Str Acad 14, Bucharest 010014, Romania
机构:
Middle East Tech Univ, Dept Math, TR-06800 Ankara, TurkeyMiddle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey
Coskun, Emre
Genc, Ozhan
论文数: 0引用数: 0
h-index: 0
机构:
Middle East Tech Univ, Math Res & Teaching Grp, TR-06800 Ankara, Turkey
Middle East Tech Univ, Math Res & Teaching Grp, Northern Cyprus Campus, Kktc 10, Mersin, TurkeyMiddle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey